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Electricity markets face a substantial amount of uncertainty. While traditionally this uncertainty has been

due to varying demand, with the integration of larger proportions of volatile renewable energy, added uncer-

tainty from generation must also be faced. Conventional electricity market designs cope with uncertainty

by running two markets: a market that is cleared ahead of time, followed by a real-time balancing market

to reconcile actual realizations of demand and available generation. In such mechanisms, the initial clear-

ing process does not take into account the distribution of outcomes in the balancing market. Recently an

alternative so-called stochastic settlement market has been proposed (see e.g. Pritchard et al. (2010) and

Bouffard et al. (2005)). In such a market, the ISO clears both stages in one single settlement market.

In this paper we consider simplified models for two types of market clearing mechanisms. First a market

clearing mechanism utilized in New Zealand, whereby firms offer in advance and are notified of a clearing

quantity and price guide based on an estimate of demand. Then in real time firms are dispatched according

to realized demand and prices are determined. We refer to this as NZTS. Secondly we consider a simplified

stochastic programming market clearing mechanism.

We demonstrate that under the assumption of symmetry, our simplified stochastic programming market

clearing is equivalent to a two period single settlement (TS) system that takes count of deviation penalties in

the second stage. These however differ from NZTS. We prove that this stochastic settlement models results

in better social welfare than the NZTS under the assumption of symmetry.

Our models are targeted towards analyzing imperfectly competitive markets. We will construct Nash

equilibria of the resulting games for the introduced market clearing mechanisms and compare them under

the assumptions of symmetry and in an asymmetric example.
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1. Introduction

Electricity markets face two key features that set them apart from other markets. The first is

that electricity cannot be stored, so demand must equal supply at all times. This is particularly

problematic given that demand for electricity is usually uncertain. Second, electricity is transported

from suppliers to load over a transmission network with possible constraints. The combination

of these two features means that in almost all electricity markets today an Independent System

Operator (ISO) sets dispatch centrally and clears the market. Generators and demand-side users

can make offers and bids, and the ISO will choose which are accepted according to a pre-determined

settlement system.

The classic settlement system used in almost all existing electricity markets is one where the

ISO sets dispatch to maximize social welfare. Effectively the ISO matches supply to meet (the

uncertain) demand at every moment while maximizing welfare. This becomes particularly difficult

in the short-run (up to 24 hours before actual market clearing) as some types of generator (e.g.

steam turbines and to some extent gas turbines) need to ramp up their generation slowly, and it is

costly to change their output rapidly. Different markets have approached this problem in different

ways.

One approach used is to run a deterministic two-period market clearing model (see e.g. Kamat

and Oren (2004)). In many jurisdictions such as the PJM, this amounts to a day ahead followed by

a real time market with separate, financially binding settlements for each market. In New Zealand,

however, the generators can place offers for a given half hour period up to “gate closure” which

occurs two hours prior to a designated period. At gate closure these offers are locked in. Estimates

of dispatch quantity and price are provided to the industry participants based on forecast demand

in the periods leading up to real time. We refer to these as pre-dispatch quantities and prices. 1 At

the start of the designated period an accurate measure of demand is available to the ISO and the

generators are dispatched accordingly. In the New Zealand electricity market (NZEM), the ISO

redispatches the generators every five minutes during a half hour period, using updated demand

information but according to the same offer curves, locked in at gate closure.2 In the NZEM there

is only a single settlement as the pre-dispatch quantities and prices are not financially binding.

In this deterministic two period single-settlement (NZTS) market, expected demand is used to

clear the pre-dispatch quantities and the ISO has no explicit measure of any deviation costs for a

generator.

1 In so far as using these estimates to make an offer, the information is only useful up to gate closure as thereafter
offers can not be changed.

2 The current financial settlement in the NZEM is based on ex-post prices that are computed with average demand
over a period. Constrained on and off payments are used to ensure sufficient payment is made to the generators.
However the Electricity Authority has taken real time pricing under consultation with the stakeholders.
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An alternative to deterministic settlement systems is to use a stochastic settlement process to

deal with variable demand. (We will consider demand as gross demand net intermittent renewable

generation such as wind, which in the NZEM is forced to offer at zero price.) In a stochastic

settlement, the ISO can choose both pre-dispatch and short-run deviations for each generator to

maximize expected social welfare in one step. We might then expect a stochastic settlement system

to do better (on average) than a deterministic two period system. The idea of a stochastic settlement

can be attributed to Bouffard et al. (2005), Wong and Fuller (2007) and Pritchard et al. (2010).

In these two-stage, single settlement models, the pre-dispatch clears with information about the

future distribution of uncertainties in the system (e.g. demand and volatile renewable generation,)

and information about deviation costs for each generator. These models assume that each firms’

offers and deviation costs are truthful. In an imperfectly competitive market, this assumption is

not valid. The question then remains: can the stochastic settlement auction give better expected

social welfare when firms are behaving strategically? That is the question explored by this paper.

In order to answer this question, we should first construct an equilibrium model of these two

market mechanisms.

There are several studies that analyse supply function equilibrium (SFE) models in the literature.

Klemperer and Meyer (1989b) were the first authors who considered uncertainty in demand for SFE

models. In their model, firms are uncertain about demand and should cater for different demand

scenarios, as the spot price is determined after demand realization and is dependent on their offered

supply function. They state that having uncertainty in the model decreases the number of equilibria

dramatically as generators need to come up with supply functions that are optimal for different

cases of residual demand functions.

There are also several studies that consider deterministic two settlement electricity markets.

Allaz and Vila (1993), Willems (2005) and Gans et al. (1998) show that firms are desirous of

participating in a forward market, even though it decreases prices. Allaz (1992) and Allaz and Vila

(1993) consider a two settlement Cournot-Nash electricity market for the first time. Their model

illustrates how firms are exposed to Prisoner’s dilemma leading them to contract in a forward

market and ultimately reduce spot prices and their respective profits. Haskel and Powell (1994)

extended Allaz and Vila’s analysis for general conjectural variations. Gans et al. (1998) also upheld

the conclusion that a contract market can increase competition in the spot market and so leads

to lower prices. They used a two-way contract for their model. Willems (2005) replaced two-way

contracts in Allaz and Vila’s model with call options and compared the consequences of these

assumptions, such as market efficiency. Later, Bushnell (2007) extended Allaz and Vila’s model

to an oligopoly and investigated the effects of forward contracting on the spot market. Su (2007)
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also extended Allaz and Vila’s model to a case of non-symmetric firms and concluded that forward

market increases market efficiency. While these models are interesting, they fall short of analysing

a situation like what occurs in New Zealand. Our focus for NZTS is to address the effect of costs

due to dispatch deviations, resulting from short term (a few trading periods) variations in net

demand, to generator offers.

There are also a number of models in the literature that consider uncertainty in the context of

two settlements.

von der Fehr and Harbord (1992) used a two settlement model with multiple demand scenarios

and capacity constraints. They explained how spot prices could be reduced as an effect of contract

forward markets. They argued that willingness to increase contract quantity and to be dispatched

up to their full capacity in most scenarios causes firms to take part in the contract market. Also

on this matter, Batstone (2000) examined the problem of uncertainty in cost of generation along

with risk-neutral generators and risk-averse consumers and found that generators are willing to

take advantage of the uncertainty of consumers towards the spot market. The strategic behaviour

of generators increases the uncertainty and risk of the spot market for consumers.

Shanbhag (2006) investigates a two settlement stochastic market for a two-node model. The model

he considers in his investigation is a Nash-Cournot model. Zhang et al. (2010) propose a two

stage oligopoly stochastic Nash-Cournot equilibrium problem with equilibrium constraints. This

means that their forward market equilibrium is constrained to the spot market equilibrium as

a complementarity problem. In their model, they use rational risk-neutral generators that are

involved in a two-way contract market. The spot market is assumed to be a Nash-Cournot market.

They demonstrate the existence and uniqueness of equilibrium, and use some numerical examples

to show these characteristics in a market implementation. None of these models caters for the

recently proposed stochastic programming market clearing model that we investigate in this paper.

We start by introducing a simplified version of the NZTS market currently operated in New

Zealand. We will then introduce a simplified version of the stochastic programming mechanism for

clearing electricity markets. The first simplification in our models is to use affine supply function

offers. Green (see Green (1996)) used this restricted form of supply functions to assess the effects of

policies on enhancing competition in the England and Wales market. He showed that in presence of

linear demand functions, one supply function equilibrium is always an equilibrium over affine supply

functions. Subsequently, Baldick et al. (2004) extended Green’s work to piecewise linear supply

functions. Day et al have also used linear supply functions but with specific forms of conjectural

variation (see Day et al. (2002)).

We will establish that the stochastic program reduces to a two period single settlement model

slightly different from the NZTS model were deviation penalties are explicitly considered by the
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ISO. We refer to this market clearing mechanism as ISOSP. We will present existence results of

equilibria for the simplified NZTS and derive an analytical expression for a symmetric equilibrium.

We then establish the key result that reduces the simplified stochastic market clearing mechanism

(ISOSP,) to a NZTS type model, but with explicit deviation penalties. Here again we construct

analytical expressions for symmetric equilibria. Finally we compare the symmetric equilibria of

NZTS and ISOSP settlements and show that the ISOSP settlement with explicit deviation costs

performs better in terms of expected social welfare. When the assumption of symmetry is relaxed,

analytical expressions for an equilibrium become intractable for either model. We will therefore

present numerical results for a number of cases and compare equilibria of the two market clearing

systems. We find that in all cases ISOSP performs better than the NZTS.

In section 6.2, we repeat the symmetric experiments that construct and compare the equilibria

of NZTS and ISOSP mechanisms, but for the restricted version of linear supply functions where

the intercept is set to zero. Here we find that there is a unique symmetric equilibrium for the

game. For this case, we present an example where the ISOSP welfare is in fact less than the NZTS

mechanism. This result is in contrast to the previous set of results where generators have another

degree of freedom in their bids in the form of an intercept. Section 7 concludes the paper.

2. The Market Environment

In this paper, we aim to compare different market designs for electricity. We begin by presenting

assumptions that are common to all markets we consider, features of what we call the market

environment. These include such considerations as the number of firms, the costs firms face, the

structure of demand and so forth.

Assumption 1. The market environment may be defined by the following features.

• Electricity is traded over a network with no transmission constraints and no line losses, thus

we may consider all trading as taking place at a single node. 3

• Demand for electricity is uncertain, and may realize in one of s∈ {1, ∙ ∙ ∙ , S} possible outcomes

(scenarios), each with probability θs. Demand in state s is assumed to be linear, and defined by

the inverse demand function ps = Ys − ZCs, where Cs is the quantity of electricity and ps is the

market price, in scenario s. Without loss of generality, assume Y1 < Y2 < ... < YS. We will denote

the expected value of Ys by Y =
∑

s θsYs. The distribution of demand is common knowledge to the

agents.

• There are n symmetric firms wishing to sell electricity.

3 This assumption may also shed light on any scenario where line capacities do not bind, even if in other scenarios
they do bind.
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• For a given firm i in scenario s, we will denote the pre-dispatch quantity by qi, and any short-

run change in production by xi,s. Thus a generator’s actual production in scenario s is equal to

qi + xi,s, which we denote by yi,s.

• Each firm i’s long-run cost function is αqi + β
2
q2

i , where qi is the quantity produced by firm i,

and β > 0.

• Each firm’s short-run cost function is α (qi + xi,s) + β
2
(qi + xi,s)

2 + δ
2
x2

i,s, where qi is the

expected dispatch of firm i, and qi + xi,s is the actual short-run dispatch and δ > 0.

• As minimum marginal cost of generation should not be more than maximum price of electricity,

we assume

α≤ Ys ∀s∈ {1, . . . , S}.

• There is an Independent System Operator (ISO) who takes bids and determines dispatch and

prices according to the given market design.

• All the above assumptions are common knowledge to all participants in the market.

• We assume that the strategy space of each participant is defined by their choice of linear supply

function parameters discussed under each market clearing mechanism.

• The payoff for each participant is determined by revenues earned from the spot sales of elec-

tricity less the cost of production defined above.

Our assumptions on generators’ cost functions are particularly critical to the analysis that fol-

lows, and deserve further explanation. Generators face two distinct costs when generating electric-

ity. If given sufficient advance notice of the quantity they are to dispatch, the generator can plan

the allocation of turbines to produce that quantity most efficiently. This is what we mean by a

long-run cost function. The interpretation of this is the lowest possible cost at which a generator

can produce quantity q. In electricity markets, however, demand fluctuates at short notice, and

the ISO may ask a generator to change its dispatch at short notice. In this case, generators may

not have enough time to efficiently reallocate its turbines. For example, many thermal turbines

take hours to ramp-up. Most likely, the generator will have to adopt a less efficient production

method, such as running some turbines above their rated capacity which also increases the wear

on the turbines. Thus there is some inherent cost in deviating from an expected pre-dispatch in

the short-run. This cost can be incurred even if the requested deviation is negative. We assume

that the generator will be unable to revert to the most efficient mode of producing this quantity

qi,s + xi,s in the short-run, so pays a penalty cost. Note that this imposes a positive penalty cost

upon the generator for making the short-run change, even if the change is negative. This penalty

cost is additively imposed on top of the ‘efficient’ cost of producing at the new level. We call this
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cost the deviation cost. Note that we assume the symmetric case in which cost of generation and

deviation is determined through the same constant parameters (α,β, δ).

Our goal is to compare the outcomes of different markets imposed upon this environment. To be

able to draw comparisons in different paradigms, we need to examine the steady state behaviour

of participants under the different market clearing mechanisms. To this end, we need to compute

equilibria arising under the different market clearing mechanisms. In order to make the computa-

tions tractable, we will restrict the firms to offer linear supply functions in the following sections

of this paper.

3. Deterministic Two Period Settlement (NZTS) Model

In this section we will introduce a deterministic two period market which is inspired by the market

clearing mechanism as it operates currently in New Zealand. As explained in the introduction, in

the NZEM firms bid a step supply function for a given half hour period. The bid is made at least

two hours in advance. Once gate closure occurs (two hours in advance of any given period), the

supply function offers can not be changed. The market will then be cleared six times, every five

minutes during the given half hour period. Each five minute re-dispatch is computed with real

time demand, but with the supply offer stacks that have been submitted prior to gate closure. 4 We

simplify the situation by assuming the market clears only twice; once after the offers are submitted,

but before demand is realized. This we call the ‘pre-dispatch’ phase which tells the generators

approximately how much they should produce. Once demand is realized, the same offers will be

used to determine actual dispatch in what we call the ‘spot settlement’. The difference between

pre-dispatch and spot dispatch is a generator’s short-run deviation, which is subject to potentially

higher costs as we described earlier however the ISO has no knowledge of this cost and it is not

explicitly stated in the generators’ bids. This cost can be indirectly reflected in the supply functions

the generators bid in.

3.1. Mathematical Model

Our simplified mathematical model for the NZTS market has two distinct stages; pre-dispatch

and spot. Following the large body of literature on affine supply functions (see e.g. Green (1996),

Baldick et al. (2004)) we will work with a linear demand curve and frame generator supply offers as

linear functions. Explicitly, each generator i bids a supply function ai + biqi before the pre-dispatch

market to represent their quadratic costs. This supply function is required to be increasing, i.e. the

4 Within this five minute period a frequency keeping generator will match any small changes in demand. We ignore this
aspect of the market, as frequency-keeping is purchased through a separate market and until recently was procured
through annual contracts.
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offered bi must satisfy bi ≥ ε > 0, where ε is the machine epsilon. Note that unlike Green (1996),

we do not assume that the intercept ai = 0. Following our main analysis, we will present a brief

special case where ai = 0 is required.

When generators lock in their offers demand is uncertain (in New Zealand this point in time

is referred to as gate closure). The ISO will then use the generator’s bid twice: once to clear the

pre-dispatch market, and once again after demand is realized to clear the spot market. The pre-

dispatch market determines the pre-dispatch quantities each generator is asked to dispatch, and

the spot market determines the final quantities the generators are asked to dispatch. As in reality,

in both the pre-dispatch and spot markets, the ISO aims to maximize social welfare, assuming

generators are bidding their true cost functions. Since demand is unknown in pre-dispatch, the ISO

will nominate (and use) an expected demand (and will not consider the distribution of demand).

min z =
∑n

i=1

(
aiqi + bi

2
q2

i

)
−
(
Y Q− Z

2
Q2
)

s.t.
∑n

i=1 qi −Q = 0 [f ]
(1)

From this first settlement, the ISO can extract a forward price f equal to the shadow price on the

(expected demand balance) constraint. f is not used for any settlements as the pre-dispatch quntity

and prices are merely a guide at this stage. Recall that the pre-dispatch quantity for generator i is

denoted by qi. After pre-dispatch is determined, true demand is realized, and the ISO then clears

the spot market (using the specific demand scenario that has been realized) to maximize welfare

by solving (2).

min z =
∑n

i=1

(
aiyi,s + bi

2
y2

i,s

)
−
(
YsCs − Z

2
C2

s

)

s.t.
∑n

i=1 yi,s −Cs = 0 [ps]
(2)

Here again the ISO computes a spot price ps as the shadow price on the constraint. (Note that we

can eliminate the constraint and substitute Cs in the objective, however imposing this constraint

enables the easy introduction of the price as the shadow price attached to the constraint.) The

generator is not permitted to change its bid after pre-dispatch, but does face the usual additional

deviation cost δ for its short-run deviation.

Note that in both ISO optimization problems (1, 2) we have dispensed with non-negativity

constraints on the pre-dispatch and dispatch quantity respectively. We will demonstrate that the

resulting symmetric equilibria of our NZTS market model will always have associated non-negative

pre-dispatch and dispatch quantities. We have eliminated the non-negativity constraints following

the convention of supply function equilibrium models (see e.g. Klemperer and Meyer (1989a), Bolle

(1992)) in order to enable the analytic computation of equilibrium supply offers.
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Firm i’s profit in scenario s in this market is then given by

uTS
i,s (qi, xi,s) = ps (yi,s)−

(

αyi,s +
β

2
y2

i,s +
δ

2
(yi,s − qi)

2

)

. (3)

3.2. Equilibrium Analysis of the Deterministic Two Period Market

In this section we will present equilibria of the NZTS market model. We will first compute the

optimal dispatch quantities from the ISO’s optimal dispatch problems (1) and (2) for any number

of players. We will then embed these quantities in each generator’s expected profit function and

allow the generators to simultaneously optimize over their (linear) supply function parameters to

obtain equilibrium offers.

Proposition 1. Problem (1) is a convex program with a strictly convex objective. Its unique opti-

mal solution and the corresponding optimal dual f are given by

f =
Y + ZA

ZB +1
qi = fBi −Ai

where Ai = ai
bi

, Bi = 1
bi

, A =
∑n

i=1 Ai and B =
∑n

i=1 Bi.

Proof. Note that problem (1) has a single linear constraint and that its objective is a strictly

convex quadratic as we have assumed that bi > 0 and Z > 0. The problem therefore has a unique

optimal solution delivered by the first order conditions provided below.

Q−
∑

i

qi = 0 (4)

f −Y + ZQ = 0 (5)

−f + ai + biqi = 0 ∀i (6)

Algebraic manipulation of equations (5 – 6) will provide the results.

We note that this is similar to Green’s analysis in (Green (1996)), although we allow for an

intercept parameter as well.

Proposition 2. For each scenario s, problem (2) is a convex program with a strictly convex

objective. Its unique optimal solution and the corresponding optimal dual ps, are given by

ps =
Ys + ZA

ZB +1
yi,s = psBi −Ai

where Ai,Bi,A and B are defined above in proposition (1).
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Proof. Problems (2) and (1) are structurally identical, therefore the simple proof of proposition

(1) applies again here.

Remark 1. Note from the above that the pre-dispatch price (and quantity) are equal to the

expected spot market prices (and quantities respectively). That is

f =
S∑

s=1

θsps. (7)

We will now compute the linear supply functions resulting from the equilibrium of the TS market

game laid out in (1). Before we begin with the firm computations, we will establish a technical

lemma that we utilize in establishing the equilibrium results.

Lemma 1. Assume that function f(x, y) : R2 →R is defined on a domain Dx×Dy with Dx,Dy ⊆R.

Furthermore assume that x∗(y)∈Dx, maximizes f(x, y) for any arbitrary but fixed y. Also assume

g(y) = f(x∗(y), y) is maximized at y∗ ∈Dy. Then, f(x, y) is maximized at (x∗(y∗), y∗).

3.2.1. Firm i’s computations In this section we will focus on firm i’s expected profit func-

tion. Note that using equation (7) we obtain

uTS
i = Es[uTS

i,s ] =
S∑

s=1

θs

(

psyi,s −

(

αyi,s +
β

2
y2

i,s +
δ

2
(yi,s − qi)

2

))

.

Using propositions (1) and (2), we can re-write uTS
i as a function of ai and bi. In order to find

a maximum of uTS
i (for a fixed set of competitor offers) we appeal to a transformation that will

yield concavity results for uTS
i . We consider uTS

i to be a function of Ai and Bi (instead of ai and

bi). Note that the transformation (Ai = ai
bi

, Bi = 1
bi

) is a one-to-one transformation.

Proposition 3. Let all competitor (linear) supply function offers be fixed. The following maxi-

mizes uTS
i (and is therefore firm i’s best response).

Bi =
1+ ZB−i

Z + β + δ + Z(β + δ)B−i

Ai =
α + Bi (Zα− δ (Y + ZA−i)) + ZαB−i

2Z + β + ZβB−i

where A−i =
∑

j 6=i Aj and B−i =
∑

j 6=i Bj.

Proof. We can show that uTS
i is a concave function of Ai, assuming Bi is a fixed parameter.

Here we have dispensed with the expression for uTS
i as a function of Ai and Bi as it is long and

rather complicated. This expression can be found in the online technical companion Khazaei et al.

(2013a). We note that uTS
i is a smooth function of Ai and Bi and that
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∂2uTS
i

∂Ai
2 =−

(1+ ZB−i) (2Z + β + ZβB−i)
(1+ ZB) 2

≤ 0

Let Bi be arbitrary but fixed. As uTS
i is a concave function of Ai the first order condition yields

an expression for A∗
i (Bi), the value of Ai that maximizes uTS

i (for the fixed Bi).

A∗
i (Bi) = (1+ZB−i)(−Y +α−ZA−i+ZαB−i)+Bi(Z(Y +ZA−i)+(Zα+βY +ZβA−i)(ZB−i+1))

(1+ZB−i)(2Z+β+ZβB−i)
.

We can embed A∗
i (Bi) into uTS

i and find the maximizer in terms of Bi. Lemma (1) then can be

applied to demonstrate that the end result delivers the maximum of uTS
i .

After embedding this value of A∗
i into the profit function, the derivative with respect to Bi of

uTS
i is

dui

dBi

=
(Y 2 −

∑
s θsY

2
s ) (−1+ (Z + β + δ)Bi + Z (−1+ (β + δ)Bi)B−i)

(1+ ZB) 3
.

B∗
i = 1+ZB−i

Z+β+δ+Z(β+δ)B−i
, is the zero of this derivative. Recall that Y =

∑
s θsYs, therefore Jensen’s

inequality implies Y 2 −
∑

s θsY
2

s ≤ 0. Thus, dui
dBi

≥ 0, when Bi < Bi
∗, and dui

dBi
≤ 0, when Bi > B∗

i . In

other words, ui is a quasi-concave function of Bi and is maximized at Bi = Bi
∗.

Note that evaluating A∗
i at B∗

i yields

A∗
i =

α + Bi (Zα− δ (Y + ZA−i)) + ZαB−i

2Z + β + ZβB−i

.

From the above, we can obtain the equilibrium of the NZTS model by solving all best responses

simultaneously. This gives the unique and symmetric solution

2S-EQM: Bi =
2

−(n− 2)Z + β + δ +
√

(n− 2)2Z2 +2nZ(β + δ)+ (β + δ)2
(8)

Ai =
α +(nZα−Y δ)Bi

2Z + β +(n− 1)Z(β + δ)Bi

, (9)

or alternatively

2S-EQM: bi =
−(n− 2)Z + β + δ +

√
(n− 2)2Z2 +2nZ(β + δ)+ (β + δ)2

2
(10)

ai =
αbi +(nZα−Y δ)

2Zbi + βbi +(n− 1)Z(β + δ)
, (11)

As we discussed earlier, these equilibrium offers yield non-negative pre-dispatch and dispatch

quantities. Below we formally state this result, however the computations to show the non-

negativity of these quantities can be found in the technical companion Khazaei et al. (2013a).
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Proposition 4. The equilibrium pre-dispatch and spot production quantities of the firms in the

NZTS market are non-negative, i.e.qi ≥ 0 ∀i, and yi,s ≥ 0 ∀i, s where qi and yi,s are the optimal

solutions to problems (1) and (2) respectively using the equilibrium parameters from (10) and (11).

Proof. For the proof please consult the technical companion Khazaei et al. (2013a).

4. Stochastic Settlement Market

4.1. ISOSP Model

We now introduce the market model we will use to analyze a stochastic settlement market. As

discussed in the introduction, the stochastic settlement market contains only a single stage of

bidding, but the market clearing procedure takes into account the distribution of future demand

when determining dispatch. The market works as follows. When the market opens, demand is

uncertain. Firms are allowed to bid their ‘normal’ cost functions (the cost of producing a given

output most efficiently) and a ‘penalty’ cost function that they would need to be paid to deviate

in the short-run. Since firms have quadratic cost functions, they can bid their actual costs by

submitting a linear supply function. Each firm i chooses ai and bi to bid the linear supply function

ai + biq, and di to bid the (marginal) penalty cost diq. For a marginal deviation penalty, we look

for a function that is zero when the dispatch is not changed from the pre-dispatch quantity, as well

as positive to the right and negative to the left of the pre-dispatch. One of the simplest form this

function can take is the linear form we have assumed. While the true marginal cost of deviation

for a station may be non-linear, it is expected to be smooth as it relates to engineering attributes

such as flow of water through an aperture. Therefore to the first order, it can be approximated by

a linear function. Note that as with the NZTS model, these bids (ai, bi, di) need not be their true

values (α,β, δ). The offered bi is required to be positive and di should be non-negative.

After generators have placed their bids, the ISO computes the market dispatch according to

the stochastic settlement model (outlined below). At this point demand is still uncertain. The

ISO chooses two key variables. The first is the pre-dispatch quantity for each firm. This is the

quantity the ISO asks each firm to prepare to produce, namely the pre-dispatch quantities qi

defined in Section 2. The second is the short-run deviation for generator i under each scenario

s. This deviation is the variable xi,s defined in Section 2, representing the adjustment made to

firm i’s predispatch quantity in scenario s. The ISO can choose both pre-dispatch and short-run

deviations simultaneously, while aiming to maximize expected social welfare. The ISO assumes

that generators have bid their true costs.

In the final stage, demand is realized, and the ISO will ask generators to modify their pre-dispatch

quantity according to the short-run deviation for the particular scenario. Each generator ends up
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with producing qi + xi,s. Two prices are calculated during the course of optimizing welfare. The

first is the (shadow) price of the pre-dispatch quantities. We will denote this by f . The second are

the prices of each of the deviations, for each of the scenarios. We will denote these by ps for scenario

s. Each generator is paid f per unit for its pre-dispatch quantity qi, and ps for its deviations xi,s.

Thus in realization s, generator i makes profit equal to

uSS
i,s (qi, xi,s) = fqi + psxi,s −

(

α (qi,s + xi,s) +
β

2
(qi,s + xi,s)

2 +
δ

2
x2

i,s

)

. (12)

Mathematically, the stochastic optimization problem solved by the ISO can be represented as

follows. 5

ISOSP:

min z =
∑S

s=1 θs

(∑n

i=1

[
ai(qi + xi,s)+ bi

2
(qi + xi,s)2 + di

2
x2

i,s

]
− (YsCs − Z

2
C2

s )
)

s.t.
∑

i qi −Q = 0 [f ]
Q +

∑
i xi,s −Cs = 0 ∀s∈ {1, . . . , S} [θsps]

Q and Cs stand for the total contracted (or pre-dispatched) quantity and total consumption in

scenario s respectively. Note that we could have eliminated the two equality constraints. However,

their dual variables are the market prices f and ps respectively, so for clarity we have left them in.

Note that in the ISOSP, an estimate of a future distribution is used. Khazaei et al. (2013b)

examine the effectiveness of ISOSP in an empirical competitive setting.

4.2. Characteristics of the Stochastic Optimization Problem

We begin by presenting a series of results that simplify the set of solutions to the ISOSP problem.

We start by establishing technical lemmas that enable us to prove that out ISOSP is equivalent to

a two period market clearing mechanism similar to NZTS, with the essential difference that now

a deviation penalty is present in the ISO’s dispatch in real time. These results drastically simplify

the subsequent analysis of firms’ behaviour in equilibrium.

Lemma 2. In the stochastic settlement market clearing, the expected deviation of firm i from pre-

dispatch quantity q∗
i is zero, that is, the optimal solution to ISOSP will always satisfy

∑

s

θsx
∗
i,s = 0.

5 This is a modified version of Pritchard et al.’s problem. There is only one node and thus no transmission constraints,
and demand is elastic.
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Proof. Let us assume q∗
i and x∗

i,s form ISOSP’s optimal solution. Let us define for each i and

s the quantity ki,s = q∗
i + x∗

i,s, the total production of firm i in scenario s. Note that Cs =
∑

i q
∗
i +

∑
i x

∗
i,s. Assume, on the contrary, that there exists at least one firm j such that

∑
s θsx

∗
j,s 6= 0. The

optimal objective value of ISOSP is then given by

∑

i

∑

s

θs(aiki,s +
bi

2
(ki,s)2)+

∑

i

∑

s

θs

di

2
(x∗

i,s)
2 + Ys

∑

i

ki,s −
Z

2
(
∑

i

ki,s)2. (13)

Note that as
∑

s θsx
∗
j,s 6= 0, the term

∑
i

∑
s θs

di
2
(x∗

i,s)
2 is positive. Now, for a fixed i and ki,s

given from above, consider the problem

min
qi,xi,s

w =
di

2

S∑

s=1

θsx
2
i,s

qi + xi,s = ki,s ∀s. (14)

This problem clearly reduces to the univariate problem

min
qi

w =
S∑

s=1

θs(ki,s − qi)2,

which is optimized at

qi =
S∑

s=1

θski,s.

Define q̂i and x̂i,s by

q̂i =
{

q∗
i , i 6= j∑S

s=1 θskj,s otherwise,

and

x̂i,s =
{

x∗
i,s, i 6= j

kj,s − q̂j otherwise.

By definition, q̂i + x̂i,s = q∗
i + x∗

i,s for all i and s. It is easy to see that the quantities q̂i and x̂i,s

yield a feasible solution to ISOSP satisfying (14). Furthermore, the objective function evaluated

at q̂i and x̂i,s is given by

∑

i

∑

s

θs(aiki,s +
bi

2
(ki,s)2)+ Ys

∑

i

ki,s −
Z

2
(
∑

i

ki,s)2.

This value is strictly less than the objective evaluated at q∗
i and x∗

i,s (given by 13), as we have

already established that
∑

i

∑
s θs

di
2
(x∗

i,s)
2 > 0. This yields the contradiction that proves the result.

Corollary 1. In the stochastic problem ISOSP, if q∗
i + x∗

i,s ≥ 0 is satisfied ∀s ∈ {1, . . . , S} then

q∗
i ≥ 0 will hold.
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Proof. In Lemma 2 we established that
∑

s θsx
∗
i,s = 0. Therefore there exists a scenario s′ such

that x∗
i,s′ ≤ 0. Clearly then q∗

i + x∗
i,s′ ≥ 0 implies q∗

i ≥ 0.

Discussion Lemma 2 is the crucial result that drives the rest of our characterizations. This

result hinges on the fact that we penalize quadratic deviation from the pre-dispatch quantity. In

the proof of Lemma 2, we demonstrate that the second stage of ISOSP reduces to selecting a

contract point that minimizes the quadratic deviation penalty function which is known to be the

mean of any distribution. For the quadratic penalty this is irrespective of the distribution. (It is

possible to also use an absolute value based deviation penalty and require a symmetric demand

distribution. When the penalty function is an absolute value, the point of best estimate is the

median of the distribution. For a symmetric distribution of course this reduces again to the mean.)

This model penalizes the deviations upward and downward identically. Therefore the predispatch

point is optimized based on the mean demand scenario. The reader may argue that allowing for

different upward and downward penalties is more realistic. However as Pritchard et al. (2010)

show, such allowance of asymmetric penalties can lead to systematic arbitrage by the ISO, where

a generator may be required to deviate upward “in every scenario” simply to increase expected

welfare. This is undesirable for a market clearing mechanism. We have therefore confined our

attention to the symmetric upward and downward penalty case for this paper, which guarantees

systematic arbitrage will not occur. We now use the above results and intuition to prove that

the ISO’s optimization problem can be viewed as a deterministic two period settlement system

where unlike NZTS, the deviation penalties are explicitly stated in the ISO’s problem in the second

period.

Lemma 3. The objective function of ISOSP is equivalent to the following function which is sepa-

rable in the pre-dispatch and the spot market variables

z =
n∑

i=1

(

aiqi +
bi

2
q2

i

)

−Y
n∑

i=1

qi +
Z

2

(
n∑

i=1

qi

)2

+
n∑

i=1

(
bi + di

2

S∑

s=1

θsx
2
i,s

)

−
n∑

i=1

S∑

s=1

θsYsxi,s +
Z

2

S∑

s=1

θs

(
n∑

i=1

xi,s

)2

.

Proof. Substituting for Cs from constraints into the objective function of ISOSP yield

z =
n∑

i=1

(

aiqi +
bi

2
q2

i

)

−Y
n∑

i=1

qi +
Z

2

(
n∑

i=1

qi

)2

+
n∑

i=1

(
bi + di

2

S∑

s=1

θsx
2
i,s

)

−
n∑

i=1

S∑

s=1

θsYsxi,s +
Z

2

S∑

s=1

θs

(
n∑

i=1

xi,s

)2

+
n∑

i=1

(

ai

S∑

s=1

θsxi,s

)

+
n∑

i=1

(

qibi

S∑

s=1

θsxi,s

)

+
S∑

s=1

θsZ
n∑

i=1

n∑

j=1

qixj,s
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We have split the objective in three parts above. Note that the first part of the objective above

is exclusively a function of pre-dispatch quantities qi and the second only a function of the spot

dispatches xi,s. We rewrite the third segment to make obvious that it is zero at optimality.

z =
n∑

i=1

(

aiqi +
bi

2
q2

i

)

−Y
n∑

i=1

qi +
Z

2

(
n∑

i=1

qi

)2

+
n∑

i=1

(
bi + di

2

S∑

s=1

θsx
2
i,s

)

−
n∑

i=1

S∑

s=1

θsYsxi,s +
Z

2

S∑

s=1

θs

(
n∑

i=1

xi,s

)2

+
n∑

i=1

(

ai

S∑

s=1

θsxi,s

)

+
n∑

i=1

(

qibi

S∑

s=1

θsxi,s

)

+ Z
n∑

i=1

qi

n∑

j=1

S∑

s=1

θsxj,s

Recall from Lemma (2) that
∑S

s=1 θsxj,s = 0 for the optimal choice of real time dispatches.

Therefore we can eliminate the part of the objective. This completes the proof.

Note: We have therefore established that ISOSP reduces to a deterministic two period single

settlement model very similar to NZTS but with penalties di explicitly present in the second period.

The rest of this section is devoted to deriving explicit expressions for the solution of ISOSP. In

the next section we will use these expressions to arrive at best response functions for the firms

and subsequently in constructing an equilibrium for the stochastic market settlement. In order to

simplify the equations and arrive at explicit solutions, we will transform the space of the parameters

of ISOSP (i.e. the firm decision variables), much in the same way that we did in Section 3. If we

further define Ri = 1
bi+di

and R =
∑

i Ri, ISOSP reduces to minimizing the following:

z =
n∑

i=1

(
Ai

Bi

qi +
1

2Bi

q2
i

)

−Y
n∑

i=1

qi +
Z

2

(
n∑

i=1

qi

)2

+
S∑

s=1

θs




n∑

i=1

1
2Ri

x2
i,s − (Ys −Y )

n∑

i=1

xi,s +
Z

2

(
n∑

i=1

xi,s

)2


 .

Note that as before (Lemma (3)), the problem is separable in qi’s and xi,s’s, we can therefore

solve the two stages separately. Note also that the problem in each stage is a convex optimization

problem, therefore the first order conditions will readily produce the optimal solution.

Proposition 5. If (q,x, f, p) represents the solution of ISOSP, then we have

qi =
(Y + ZA)Bi

1+ ZB
−Ai (15)

xi,s =
(Ys −Y )Ri

1+ ZR
(16)

f =
Y + ZA

1+ ZB

ps =
Y + ZA

1+ ZB
+

Ys −Y

1+ ZR
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Proof. For derivation of the expressions for the optimal solution above from first order condi-

tions please refer to the technical companion Khazaei et al. (2013a).

Observe from the expression for f that this forward price (paid on pre-dispatch quantities) is

independent of any deviation costs in the spot market.

Corollary 2. In the solution of ISOSP, forward price is equal to the expected spot market price.

Proof. This is simply observed from proposition 5. Note that Y =
∑

s θsYs.

The fact that the “contract price” f is equal to the expected spot market price, implies that

there is no systematic arbitrage.

4.3. Equilibrium Analysis of the Stochastic Settlement Market

In Section (4.1) we presented firm i’s profit under scenario s in equation (12). In our market model,

we assume that all firms are risk neutral and therefore interested only in maximizing their expected

profit. Firm i’s expected profit is given by

ui = fqi +
S∑

s=1

θs

(

psxi,s −

(

α(qi + xi,s)+
β

2
(qi + xi,s)

2 +
δ

2
x2

i,s

))

, (17)

The above expression for ui can be expanded and we can observe that

ui = fqi − (αqi +
β

2
q2

i )

+
S∑

s=1

θs

(

psxi,s −
β + δ

2
x2

i,s

)

−α
S∑

s=1

θsxi,s −βqi

S∑

s=1

θsxi,s

Note that from Lemma (2), the generator would know that for any admissible bid, the corre-

sponding expected deviation from pre-dispatch quantities
∑S

s=1 θsxi,s = 0. Therefore the expected

profit for the generator becomes

ui = fqi − (αqi +
β

2
q2

i )

+
S∑

s=1

θs

(

psxi,s −
β + δ

2
x2

i,s

)

.

We can use the expressions obtained from proposition (5) to write ui as follows.

ui = −
1
2
βA2

i +
Ai (−ZA + α + ZBα + ZAβBi + Y (−1+ βBi))

1+ ZB

+
1

2(1+ ZB)2(1+ ZR)2

(

2(1+ ZR)2(ZA + Y )(ZA + Y − (1+ ZB)α)Bi − (1+ ZR)2(ZA + Y )2βB2
i

+(1+ ZB)2Ri (−2+ (β + δ)Ri)

(

Y 2 −
∑

s

θsY
2

s

))

(18)
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Although this expression of the expected profit for the generator is rather ugly, it does have the

advantage that upon differentiating with respect to Ri, all dependence on Ai and Bi drops and we

are left with

dui

dRi

=
(Y 2 −

∑
s θsY

2
s ) (−1+ (Z + β + δ)Ri + ZR−i (−1+ (β + δ)Ri))

(1+ ZR)3
. (19)

Recall that R−i =
∑

j 6=i Rj . For verification of this derivative term see the technical companion

Khazaei et al. (2013a). The fact that this derivative is free of Ai and Bi indicates that ui is separable

in Ri and (Ai,Bi), that is

ui(Ai,Bi,Ri) = gi(Ai,Bi)+ hi(Ri). (20)

Due to this natural separability, our equilibrium analysis will focus on finding best responses in

terms of Ai, Ri and Bi, very similar to the NZTS section.

Equation (20) enables us to maximize ui by maximizing gi and hi over (Ai,Bi) and Ri respec-

tively. This is helpful as we can establish quasi-concavity results for gi and hi separately.

We start our investigations by examining gi. The full expression for gi can be found in the

technical companion Khazaei et al. (2013a). Holding Bi fixed, note that

d2gi

dA2
i

=−
(1+ ZB−i) (2Z + β + ZβB−i)

(1+ ZB)2 .

This demonstrates that gi is concave in Ai for any fixed Bi. Furthermore, for any fixed Bi, we can

use the first order conditions to find A∗
i (Bi), i.e. the value of Ai that maximizes gi(Ai,Bi) for the

fixed Bi.

A∗
i (Bi)=

(1+ ZB−i) (α−ZA−i + ZαB −Y ) + (Y + ZA−i) (Z + β + ZβB−i)Bi

(1+ ZB−i) (2Z + β + ZβB−i)
(21)

To find the optimal value for gi, we can now appeal to Lemma (1) and substitute the expression

for A∗
i (Bi) in gi(A∗

i (Bi),Bi). Surprisingly, upon undertaking this substitution, it can be observed

that gi(A∗
i (Bi),Bi) is a constant value. Figure 1 depicts gi.

To uncover the intuition behind this feature of gi, we can offer the following mathematical

explanation. We observe that

dgi

dAi

=
− (1+ ZB−i) (Y −α + ZA−i +(2Z + β)Ai + ZB−i (−α + βAi))

(1+ ZB)2

+
(Z(Y + α)+ Y β + Y (Zα + Y β)B−i + ZA−i (Z + β + ZβB−i))Bi

(1+ ZB)2

and that
dgi

dBi

=−
Y + ZA

1+ ZB
.
dgi

dAi

.

Therefore, stationary conditions enforced in Ai will also imply stationarity in Bi.
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Figure 1 Two views of the function gi. Note that the optimal value of gi is obtained along a continuum, for any

value of Bi.

As gi(A∗
i (Bi),Bi) is constant for any Bi > 0, for any value of Bi > 0, the tuple (A∗

i (Bi),Bi) is an

argmax of gi for any positive Bi.

Let Di denote 1
di+ε

. Recall that according to our initial assumptions, we have bi ≥ ε, thus

bi + di ≥ ε + di > 0⇒
1

bi + di

≤
1

ε + di

⇒

Ri ≤Di.

The following analysis on hi will explain how optimal Ri is constrained by the value of Di.

Proposition 6. Suppose that R−i is fixed. Then hi is optimized at

R∗
i = min{Di,

1+ ZR−i

Z + β + δ + Z(β + δ)R−i

}

Proof. Note that at

R̂i =
1+ ZR−i

Z + β + δ + Z(β + δ)R−i

, (22)

the derivative dhi
dRi

= dui
dRi

vanishes. Also recall from Jensen’s inequality that Y 2 ≤
∑

s θsY
2

s . It can

therefore be seen from (19) that this derivative is positive for Ri < R̂i and negative for Ri > R̂i.

Recall further that the definitions of Di and Ri require Ri ≤ Di. Therefore, in optimizing hi, we

need to enforce this constraint and we obtain

R∗
i = min{Di,

1+ ZR−i

Z + β + δ + Z(β + δ)R−i

}.
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We now return to ui, the expected profit function for firm i. As ui(Ai,Bi,Ri) = gi(Ai,Bi)+hi(Ri),

we can start by obtaining the maximum value of gi attained at a point (A∗
i (Bi),Bi) for any positive

Bi. Subsequently, we proceed to optimize hi(Ri). Proposition (6) readily delivers the optimal Ri.

We have therefore proved the following theorem.

Theorem 1. The best response of firm i, holding competitor offers fixed, is to offer any di for

which we have

Di ≥
1+ ZR−i

Z + β + δ + Z(β + δ)R−i

.

For any such di, optimal ai and bi can be computed from the following equations.

Ri =
1+ ZR−i

Z + β + δ + Z(β + δ)R−i

1
Bi

=
1
Ri

− di

Ai=
(1+ ZB−i) (α−ZA−i + ZαB −Y ) + (Y + ZA−i) (Z + β + ZβB−i)Bi

(1+ ZB−i) (2Z + β + ZβB−i)
Theorem 1 indicates that the game has multiple (infinite) symmetric equilibria. To prevent

the problem of unpredictability, caused by multiple equilibria, from here on we assume that the

ISO chooses di = dSO as a system parameter. This parameter is identical for and known to all

participants. This also provides the ISO with the opportunity to choose dSO in a way to obtain a

preferable equilibrium (i.e. an equilibrium that yields higher social welfare).

Proposition 7. The unique symmetric equilibrium quantities of the stochastic settlement market

are as follows.

bi = max{ε,
−Z(n− 2)+ β + δ +

√
Z2(n− 2)2 +2Zn(β + δ)+ (β + δ)2

2
− dSO} (23)

ai =
α−Y + Bi (−Z(Y (n− 2)− (2n− 1)α)+ Y β + Z(n− 1)(Znα + Y β)Bi)

Bi (Z(n +1)+ β + Y (n− 1)(Zn + β)Bi)
(24)

The proof of the above proposition is contained in the technical companion Khazaei et al. (2013a).

Let us define

d̂ =
−Z(n− 2)+ β + δ +

√
Z2(n− 2)2 +2Zn(β + δ)+ (β + δ)2

2
.

Theorem 2. In a stochastic settlement market with dSO ≤ d̂− ε, as the number of participating

firms increases, they tend to offer their true cost parameters. In other words,

lim
n→∞

ai = α

lim
n→∞

bi + dSO = β + δ.

When the fixed parameter dSO is chosen equal to δ, limn→∞ bi = β.



Author: Market Clearing Mechanisms under Uncertainty
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 21

Proof. The equations are simply derived from the equilibrium values of ai and di given in

proposition 7.

Theorem 2 shows that the ISOSP market is behaving competitively in the sense that when

number of firms increases, they offer their true cost parameters.

One important feature of the equilibrium values are the non-negativity of the pre-dispatch and

dispatch. This is important, because we neglected the non-negativity constraints in ISOSP in the

first place.

Proposition 8. Let (q∗,x∗) represent an equilibrium of the stochastic settlement market, then the

following inequalities hold.

∀i, s : q∗
i + x∗

i,s ≥ 0

∀i : q∗
i ≥ 0

The proof of the above proposition is contained in the technical companion Khazaei et al. (2013a).

Though, the equilibrium pre-dispatch and dispatch are non-negative, one might raise an objection

that a game without the non-negativity constraints embedded in the ISO’s optimization problem,

is different from the original game. Therefore, there is no assurance the found equilibrium is also

the equilibrium of the original game. The following theorem states that the obtained equilibrium

values are also the equilibrium of the original game with non-negativity constraints. The proof of

this theorem is quite lengthy and consists of several technical lemmas. This proof can be found in

the technical companion Khazaei et al. (2013a).

Theorem 3. The equilibrium of the symmetric stochastic settlement game without the non-

negativity constraints in ISOSP is also the equilibrium of the stochastic settlement game with the

non-negativity constraints.

Proof. Please refer to the technical companion Khazaei et al. (2013a) for the proof of this

theorem.

Thus far we established that under the assumption of symmetry, the stochastic settlement

(ISOSP) market is equivalent to a two period deterministic settlement in which the deviation penal-

ties are explicitly present in the second period (DTS). We then proceeded to derive an analytical

symmetric equilibrium expression for ISOSP. In this process, we enhanced the definition of our

game to avoid multiple equilibria and allow the ISO to set a deviation penalty for the (symmetric)

players in this game. The issue of multiple equilibria arises as there are multiple optimal solutions

to the best response problem. Specifically, for any choice of bi and di, so long as Ri = 1
bi+di

= 1

d̂
, we

obtain an optimal solution (subject to boundary conditions of course).
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While in the context of our computations, due to the natural decomposition of ui, it was natural

to treat di as the free variable, our intention has been to compare the NZTS mechanism with the

ISOSP market clearing proposed. As we observed that ISOSP is equivalent to DTS, it would make

sense to think of a game where the ISO imposes the deviation penalty on all participants by choosing

di = dSO ≥ 0. If we think of the ISO choosing 0 ≤ dSO ≤ d̂, announcing dSO to all participants and

imposing this value as the deviation penalty in the second stage, the resulting game, along with

its symmetric equilibrium, is equivalent to the game where the ISO selects bSO = d̂− dSO.

Here observe that if ISO selects dSO = δ, then as the number of participants increases, in the

symmetric equilibrium we obtain bi → β and ai → α. Furthermore, it is clear that if dSO = 0, then

the equilibria for NZTS are recovered.

5. Comparison of the Two Markets

We are interested in the performance of the two market clearing mechanisms ISOSP and NZTS,

under strategic behaviour. Our criterion for comparing the two models is social welfare. Social

welfare is defined as the sum of the consumer and producer welfare and in our market environments

this reduces to

W =
S∑

s=1

θs



Ys

(
n∑

i=1

yi,s

)

−
Z

2

(
n∑

i=1

yi,s

)2




−
S∑

s=1

θs

(
n∑

i=1

(

αyi,s +
β

2
yi,s

2 +
δ

2
(yi,s − qi) 2

))

. (25)

Note that the different social welfare values W SS (for the ISOSP) and W NZTS (for the NZTS mech-

anism) are found through the same formula, however with the different equilibrium yi,s variables.

Recall that following Theorem 1 the choice of dSO was delegated to the ISO. The next theorem

establishes that when firms are bidding strategically, the stochastic settlement market dominates

the NZTS market for any choice of dSO ∈ (0, d̂).

Theorem 4. The social welfare of ISOSP is higher than the NZTS market provided the parameter

di is chosen less than or equal to the threshold value d̂− ε.

Proof. To prove the proposition, we show when dSO = 0, then WSS = WNZTS. We then demon-

strate WSS is a increasing function of dSO for 0 ≤ dSO ≤ d̂, and therefore, WSS ≥ WNZTS, when

dSO ≤ d̂ (note that WNZTS is a constant and does not change with dSO).

When dSO = 0, equations (24), (9), and (8) yield that the equilibrium quantities are identical in

the stochastic settlement and deterministic two period settlement markets. That is
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BSS
i = BNZTS

i

ASS
i = ANZTS

i

RSS
i = BSS

i

Here we can simplify the expressions for yi,s and qi (from propositions 1, 2, and 5) to obtain

qSS
i = qNZTS

i =
Y Bi −Ai

1+ ZB

ySS
i,s = yNZTS

i,s =
YsBi −Ai

1+ ZB

Therefore social welfare of these models (equation 25) are the same provided bi = b̂.

We can rewrite the social welfare expression (25) as

W =
S∑

s=1

θs



Ys

(
n∑

i=1

yi,s

)

−
Z

2

(
n∑

i=1

yi,s

)2

−
n∑

i=1

(

αyi,s +
β

2
yi,s

2 +
δ

2
xi,s

2

)


 . (26)

Note that the expression for social welfare is the same for both models and only depends on the

corresponding quantities dispatched from each model (i.e. ySS
i,s vs yNZTS

i,s etc).

Note that, according to the results of proposition 7, for 0 ≤ dSO ≤ d̂− ε, we have bi = d̂− dSO,

and therefore Ri has a constant value of 1/d̂, while Bi is a function of dSO. Furthermore, note that

xSS
i,s is independent of dSO, and therefore,

dW SS

ddSO
=

1

(d̂− dSO)2

∑

i,s

dW SS

dySS
i,s

dySS
i,s

dBi

. (27)

On the other hand, taking the derivative of ySS
i,s with respect to Bi we obtain

dySS
i,s

dBi

=
(Y −α)(n− 1)Z2

(Z + nZ + β +(n− 1)Z(nZ + β)Bi) 2
≥ 0.

The right hand side is readily seen to be non-negative as Y > α and n > 1.

As
dySS

i,s

dBi
is independent of firm i and scenario s (note that Bi is chosen by the ISO and fixed to

a single parameter for all firms,) we can re-arrange (28) and obtain

dW SS

ddSO
=

1

(d̂− dSO)2

dySS
i,s

dBi

∑

i,s

dW SS

dySS
i,s

.

On the other hand, differentiating (26) yields
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dW SS

dySS
i,s

= θs

(
Ys −α− (Zn + β)ySS

i,s

)

Hence,

∑

s

dW SS

dySS
i,s

= Y −α− (Zn + β) qSS
i

=
bZ(Y −α)

Z(n− 1)(nZ + β)+ b((n +1)Z + β)
≥ 0.

Therefore we can conclude that,
dW SS

ddSO
≥ 0.

Note that we can easily show that

d̂≥ β + δ,

and therefore, if the fixed di is chosen equal to δ then W SS ≥WNZTS.

Proposition 9. The social welfare of ISOSP is maximized if the parameter dSO is chosen equal

to the threshold value d̂− ε.

Proof. We have established (theorem 4) that dW SS

ddSO ≥ 0, for 0 ≤ dSO ≤ d̂ − ε. To prove this

proposition, we demonstrate that for dSO > d̂− ε, we have dW SS

ddSO ≤ 0. Under this condition, accord-

ing to the equilibrium formulae, we have bi = ε, and therefore, changing dSO, only modifies the

equilibrium value of Ri (and not Ai and Bi). Therefore, we have

dW SS

ddSO
=−

1
(ε + dSO)2

∑

i,s

dW SS

dySS
i,s

dySS
i,s

dRi

+
dW SS

dxSS
i,s

dxSS
i,s

dRi

. (28)

Note that qi is independent of Ri, and hence,

dySS
i,s

dRi

=
dxSS

i,s

dRi

=
Ys −Y

(1+ nZRi) 2
.

On the other hand, differentiating (26) yields

dW SS

dySS
i,s

= θs

(
Ys −α− (Zn + β)ySS

i,s

)
,

dW SS

dxSS
i,s

= θs

(
−δxSS

i,s

)
.
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Therefore, we conclude

dW SS

ddSO
=−

1
(ε + dSO)2

∑

i,s

dW SS

dySS
i,s

dySS
i,s

dRi

+
dW SS

dxSS
i,s

dxSS
i,s

dRi

=−
1

(ε + dSO)2

∑

i,s

θs(Ys −Y )
(1+ nZRi) 2

(
Ys −α− (Zn + β)ySS

i,s − δxSS
i,s

)

=−
1

(ε + dSO)2 (1+ nZRi) 2

∑

i,s

θs(Ys −Y )
(
Ys −α− (Zn + β)ySS

i,s − δxSS
i,s

)
.

In order to prove the theorem, we show Ki =
∑

s θs(Ys − Y )
(
Ys −α− (Zn + β)ySS

i,s − δxSS
i,s

)
≥ 0

for any i. Note that ySS
i,s = qSS

i + xSS
i,s , and thus

Ki =
∑

s

θs(Ys −Y )
(
Ys −α− (Zn + β)ySS

i,s − δxSS
i,s

)

=
∑

s

θsY
2

s −Y 2 − (α + ZnqSS
i + βqSS

i )
∑

s

θs(Ys −Y )− (Zn + β + δ)
∑

s

θs(Ys −Y )xSS
i,s

Replacing
∑

s θs(Ys −Y ) with zero and inputting the value of xSS
i,s = (Ys−Y )Ri

1+nZRi
, we obtain

Ki =
∑

s

θsY
2

s −Y 2 − (Zn + β + δ)
∑

s

θs(Ys −Y )
(Ys −Y )Ri

1+ nZRi

=

(
∑

s

θsY
2

s −Y 2

)(

1−
(Zn + β + δ)Ri

1+ nZRi

)

=

(
∑

s

θsY
2

s −Y 2

)(
1− (β + δ)Ri

1+ nZRi

)

.

As discussed earlier, β + δ < d̂, and thus 0 < β + δ < d̂≤ dSO < dSO + ε. If we multiply this by the

positive value of Ri = 1
dSO+ε

, we obtain (β + δ)Ri < 1. Thus, we have

1− (β + δ)Ri

1+ nZRi

> 0.

Also, according to Jensen’s inequality (or based on the non-negativity property of variance), we

can conclude var(Ys) =
∑

s θsY
2

s − Y 2 ≥ 0. These inequalities indicate that Ki ≥ 0, and therefore,

we can conclude
dW SS

ddSO
=−

1
(ε + di)2 (1+ nZRi) 2

∑

i

Ki ≤ 0.

Example 1. Consider a market with two symmetric generators as defined in table 1.

Figure 2 shows how the social welfare of the stochastic settlement mechanism is affected by the

choice of dSO. It also demonstrates that for dSO < d̂ and even beyond, the stochastic settlement

mechanism has a higher equilibrium social welfare in comparison with the NZTS mechanism. Note
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Parameter Value

α,β, δ 50,1,0.5
Y1, Y2,Z 100,150,1

θ1, θ2 0.5,0.5
n 2

Table 1 The market environment for the example
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d
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ISOSP

d

Figure 2 The effect of dSO on the social welfare of the stochastic settlement model and on how it compares to

the deterministic two period settlement mechanism.

that at dSO = d̂, the equilibrium bi is set to ε and social welfare is maximized. For the rest of this

example, we assume the ISO chooses dSO = δ = 0.5 which ensures higher equilibrium social welfare

from the stochastic settlement in comparison with the conventional mechanism.

Another interesting experiment is to investigate the effect of β and δ on these mechanisms.

0.5 1.0 1.5 2.0

1600

1800

2000

2200

2400
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Social Welfare
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1 2 3 4

1900
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2000

Social Welfare

NZTS

ISOSP

Figure 3 Social welfare of ISOSP and NZTS for different β and δ values.

Figures 3, 4, and 5 compare the ISOSP and the NZTS mechanisms for this example, however

for different β and δ values. A first observation is the stochastic settlement mechanism increases

social and consumer welfare and decreases producer welfare in comparison with the two settlement

mechanism.
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Figure 4 Producer welfare of ISOSP and NZTS for different β and δ values.
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Figure 5 Consumer welfare of ISOSP and NZTS for different β and δ values.

It is also interesting to investigate the effect of competition on these mechanisms. To do so, we

can test the effect of number of firms on these mechanism.

2.5 3.0 3.5 4.0 4.5 5.0
n

2100

2200

2300

2400

2500

Social Welfare

NZTS

ISOSP

Figure 6 Social welfare of the deterministic two period settlement mechanism converges to that of the stochastic

mechanism when n increases. Competition increases with a bigger market.

Figure 6 shows the difference in the social welfare of our two mechanisms as a function of n.

It shows that when the number of generators increase, the performance of the stochastic and

deterministic two period settlement mechanisms converge.
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6. Robustness to Modelling Assumptions

In this section, we investigate the robustness of our results to two important model assumptions.

6.1. The case of asymmetric generators

Thus far, we have derived the analytical expressions for a symmetric equilibrium. We have also

proved that the stochastic settlement market always improves social welfare under this symmetric

equilibrium. To examine what may happen when participants are not symmetric, we use a compu-

tational method laid out in section 6.1.3. We begin this section by laying out our assumptions in

the asymmetric case. We will then re-state the ISO’s market clearing problem before proceeding

to equilibrium computations.

6.1.1. The Market Environment in the Asymmetric Case These assumptions are very

similar to the assumptions for the symmetric case with only the assumption of symmetry removed.

Below we present the features of the market environment that change due to the asymmetry

assumption.

Assumption 2. The market environment with asymmetric participants may be defined by the fol-

lowing distinguishing features.

• The generators are no longer symmetric. To make the examples computationally tractable, we

focus on 2 generator examples.

• Each firm i’s long-run cost function is αiqi +
βi
2
q2

i , where qi is the quantity produced by firm i,

and βi > 0. Note that in contrast to the symmetric case, the parameters α and β are now allowed

to be different for different firms.

• Each firm’s short-run cost function is αi (qi + xi,s) + βi
2

(qi + xi,s)
2 + δi

2
x2

i,s, where qi is the

long-run expected dispatch of firm i, and qi + xi,s is the actual short-run dispatch and δi > 0.

6.1.2. Models The ISO’s optimization problem is similar to the symmetric case, however

theorem (8) no longer applies in the asymmetric case therefore to ensure the non-negativity of

the equilibrium, both for the two settlement and the stochastic programming market clearing

mechanisms, we need to enforce non-negativity in the ISO’s problem.

Therefore, the pre-dispatch problem of the ISO in the (asymmetric) two settlement mechanism

is

PDATS: min
q,Q

z =
n∑

i=1

(

aiqi +
bi

2
q2

i

)

−

(

Y Q−
Z

2
Q2

)

(29)

s.t.
∑

i

qi −Q = 0, [f ]

qi ≥ 0, ∀i.
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Also, the ISO’s spot market optimization problem for scenario s is

SATS(s): min
ys,Cs

z =
n∑

i=1

(

aiyi,s +
bi

2
y2

i,s

)

−

(

YsCs −
Z

2
C2

s

)

(30)

s.t.
∑

i

yi,s −Cs = 0, [ps]

yi,s ≥ 0, ∀i.

Similarly, the stochastic optimization problem of the ISO in the stochastic settlement mechanism

can be represented as

SPATS: min z =
S∑

s=1

θs

(
n∑

i=1

[

ai(qi + xi,s)+
bi

2
(qi + xi,s)2 +

di

2
x2

i,s

]

− (YsCs −
Z

2
C2

s )

)

s.t.
∑

i

qi −Q = 0, [f ]

Q +
∑

i

xi,s −Cs = 0, ∀s, [ps]

qi + xi,s ≥ 0, ∀i, s.

6.1.3. Equilibrium computations To find a Nash equilibrium to our games, we use a

dynamic process. The idea is to allow each participant in turn to update its strategies, assuming

the strategy set of the other participants is fixed. If this diagonalization process terminates with

no participant willing to deviate from its last strategy, then we have arrived at a Nash equilibrium.

Diagonalization procedure for the two settlement market clearing

1. Start with an initial supply function for each participant. For our examples we start with the

true cost function for each generator.

2. While an equilibrium is not obtained (i.e. there exists at least one generator that has changed

its supply function in the last round), solve the best reply problem to (global) optimality.

BR[i]: maxai,bi
ui = fqi +

∑

s

θs

(
psxi,s −αi(qi + xi,s)−

βi

2
(qi + xi,s)2

−
δi

2
x2

i,s

)

s.t. {qi, f} are optimal for PDATS and {xi,s, ps} optimal for SATS(s).

{ai, bi} ∈Ψi

Here

• ui stands for the expected profit function of firm i which is the difference between its expected

income and its expected cost of production.

• Ψi indicates the constraints imposed by the regulator on offered supply functions player i i.e.

ai and bi.
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Diagonalization procedure for stochastic programming market clearing

This procedure is almost identical to the diagonalization for the two settlement market clearing

except ISO’s optimization is a stochastic programming.

1. Start with an initial supply functions for each participant. For our examples we start with

the true cost function for each generator.

2. While an equilibrium is not obtained (i.e. there exists at least one generator that has changed

its supply function in the last round):

BR[i]: maxai,bi
ui = fqi +

∑

s

θs

(
psxi,s −αi(qi + xi,s)−

βi

2
(qi + xi,s)2

−
δi

2
x2

i,s

)

s.t. {qi, xi,s, f, ps} are optimal for SPATS.

{ai, di} ∈Ψi

Here

• ui stands for the expected profit function of firm i which is the difference between its expected

income and its expected cost of production.

• Ψi indicates the constraints imposed by the regulator on offered supply function intercept and

deviation cost for player i i.e. ai and bi.

To solve the non-convex problem BR[i], in both of the diagonalization procedures above, it is

necessary to use global optimization. For solving this optimization problem, we have used the

global solver of LINGO. The global solver of LINGO guarantees the optimality of its final solution

using a branch and bound approach. Here a sequence of piecewise convex relaxations of the original

(non-convex) problem are solved. The convex relaxations are derived using bounds on the variables.

If the optimal solution of the relaxed problem is feasible for the original problem, it is also the

optimal point of the original problem. If not, further enhancement is made through dividing up

the domain of the objective function and creating more accurate, piecewise convex functions on

each part of the domain. The process of branching continues until all branches end with an optimal

point. Note that user defined tolerances on slitting procedure make this method a finite process.

For more information about the mathematics behind this global solver see Lin and Schrage (2009).

The tolerance that we have used, as the minimum acceptable difference between best response

strategies of firms in different turns, is of order of 10−10. The LINGO code is available in the

technical companion Khazaei et al. (2013a).
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Scenarios θ Y
1 0.5 100
2 0.5 150

, Z = 1

Table 2 Scenarios and demand

6.1.4. Sensitivity to different cost structures (i.e. generation technologies) Different

generation technologies have different structure in their cost functions, e.g. a particular generation

technology may have a high generation cost but a low cost for fast deviation and another generator

might be the opposite. In this section, we analyse a market with two asymmetric generators with

various cost patterns (different layouts of αi, βi, and, δi). Without loss of generality we call the

generator with the lower αi value generator 1 and the other generator 2. We then design different

experiments with different possibilities for βi and δi (e.g. β1 > β2, β1 < β2 and etc.). For each

of these layouts, we consider two cases for dSO: dSO = mini{δi} and dSO = maxi{δi}. Consider

a market with two demand scenarios with parameters given in table 2. Table 3 summarizes the

difference between the equilibrium values of the SFSP and NZTS mechanisms for each of these

experiments. According to these results, SFSP results in lower prices, profit, and producer welfare,

and higher consumer and social welfare in comparison with the NZTS mechanism.

Table 3 Difference in the equilibrium values of the SFSP and NZTS (i.e. SFSP − NZTS) under asymmetry

assumption and different cost patters.

Ex. Gen α β δ dSO f p(s1) p(s2) Profit CW PW SW

1 1 0 0.001 0.001 0.001 -0.0057 -0.01 -0.01 -0.19 0.48 -0.30 0.18
2 10 1 0.5 0.001 -0.0057 -0.01 -0.01 -0.11 0.18

2 1 0 0.001 0.5 0.001 -0.014 -0.01 -0.02 -0.58 1.22 -0.81 0.41
2 10 1 0.001 0.001 -0.014 -0.01 -0.02 -0.23 0.41

3 1 0 0.001 0.5 0.5 -2.58839 -2.59 -2.59 -67.40 218.43 -119.41 99.02
2 10 1 0.5 0.5 -2.58839 -2.59 -2.59 -52.00 99.02

4 1 0 1 0.001 0.001 -0.00775 -0.01 -0.01 -0.23 0.64 -0.37 0.27
2 10 0.001 0.5 0.001 -0.00775 -0.01 -0.01 -0.14 0.27

5 1 0 1 0.5 0.001 -0.02637 -0.03 -0.03 -0.95 2.16 -1.05 1.10
2 10 0.001 0.001 0.001 -0.02637 -0.03 -0.03 -0.10 1.10

6 1 0 1 0.5 0.5 -2.4747 -2.48 -2.47 -58.07 202.06 -140.63 61.44
2 10 0.001 0.5 0.5 -2.4747 -2.48 -2.47 -82.56 61.44

7 1 0 0.001 0.001 0.5 -3.55014 -3.55 -3.55 -160.97 305.33 -231.03 74.30
2 10 1 0.5 0.5 -3.55014 -3.55 -3.55 -70.07 74.30

8 1 0 0.001 0.5 0.5 -3.99094 -3.99 -3.99 -91.25 348.13 -174.46 173.67
2 10 1 0.001 0.5 -3.99094 -3.99 -3.99 -83.21 173.67

9 1 0 1 0.001 0.5 -3.6365 -3.64 -3.64 -97.94 305.61 -200.01 105.60
2 10 0.001 0.5 0.5 -3.6365 -3.64 -3.64 -102.07 105.60

10 1 0 1 0.5 0.5 -3.72095 -3.72 -3.72 -89.78 311.02 -282.17 28.86
2 10 0.001 0.001 0.5 -3.72095 -3.72 -3.72 -192.38 28.86
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Gen α β δ
1 0 0.001 0.001
2 10 1 0.5

Table 4 Cost function of generators

Table 5 Equilibrium values of SFSP for different levels of dSO in comparison with the equilibrium values of

NZTS

Gen dSO a b b + d CW PW SW

1 0.0001 -0.0569 0.6563 0.6564 3688.9 3092.4 6781.3
2 0.0001 -1.0159 1.8962 1.8963
1 0.001 -0.0078 0.6554 0.6564 3689.3 3092.1 6781.4
2 0.001 -1.0042 1.8953 1.8963
1 0.01 0.4858 0.6464 0.6564 3693.3 3089.5 6782.8
2 0.01 -0.8876 1.8863 1.8963
1 0.1 5.4164 0.5565 0.6565 3735.6 3060.9 6796.5
2 0.1 0.2343 1.7963 1.8963
1 0.5 27.2341 0.1566 0.6566 3993.3 2861.7 6855.0
2 0.5 3.7615 1.3955 1.8955
1 2 15.8928 ε 2 6027.3 1782.8 7810.0
2 2 14.9124 0.1667 2.1667
1 3 15.7103 ε 3 6022.1 1769.4 7791.5
2 3 15.7103 ε 3
1 10 36.2862 ε 10 3943.7 2692.3 6636.1
2 10 36.2862 ε 10
1 100 36.2862 ε 100 3935.2 2620.8 6556.0
2 100 36.2862 ε 100

1 NZTS -0.0622 0.6567 NA 3688.0 3092.7 6780.7
2 NZTS -1.0199 1.8964 NA

6.1.5. Sensitivity to dSO To analyse the sensitivity of our results to the value of di, we

focus on the first experiment above with the cost parameters listed in table 4. To compare the

stochastic settlement mechanism with the two settlement mechanism, we find the equilibrium values

of the SFSP mechanism on a range of different dSOs. The equilibrium values of the two settlement

mechanism and the stochastic settlement mechanism for different bs are listed in table 5.

This table indicates that our proven results of the symmetric case are expected in this case as

well. Firstly, SFSP yields higher social welfare for dSO ∈ (0,maxi{δi}). Secondly, social welfare is

increasing with respect to dSO in this range and reaches its climax at a much higher level of dSO

(somewhere between 2 and 3 in this example). After this point, social welfare starts to drop with

higher dSO values and ends up lower than that of the NZTS mechanism for very large dSOs. The

third similarity is that generators submit b = ε when dSO is larger than a threshold value.
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6.2. Restriction to the case of supply functions with intercept zero

The model originally used by Green (1996) restricted the linear supply offers to have intercept at

zero. We went through the exercise of constructing NZTS and ISOSP equilibrium results when

supply functions comply with the zero intercept rule (note that this eliminates one variable from

the decision space of the generators). For this case, we restricted the model to a duopoly. The

methodology we have used for this case follows that of the general case. For each market clearing

mechanism we establish the values of qi, f , xi,s and ps as before. Then we obtain the expected

utility expressions and establish quasi-concavity results for each case following the same lines of

argument used in the previous sections. (The details are contained in the last section of the technical

companion Khazaei et al. (2013a).

When restricted by the zero intercept condition, and responding to the opponent restricted by

the same condition, the best reply and hence equilibrium values change. Furthermore, we find that

in the ISOSP case, we have a unique (symmetric) equilibrium. An interesting observation here is

that allowing one more degree of freedom, by the choice of an intercept, leading to a continuum of

equilibria, leads the ISO to acknowledge a deviation cost (penalty) for the participants (in efforts to

improve welfare). As we observed, for any choice of deviation penalty in (0, δ), the welfare of ISOSP

is improved over NZTS. This is no longer the case for the Green type linear supply functions. That

is, the welfare difference between NZTS and ISOSP can be positive or negative. Specifically, if we

fix β = 2.0, δ = 4.0, and note WNZTS −W SS by TWD, then

Y = 5 Y = 1.25
σ2

Y = 0.25 σ2
Y = 0.0625

Z = 0.5 Z = 0.125
TWD = -4.26892 TWD = 1.54577

7. Conclusion

In this paper, we set up a simple modelling environment in which we were able to compare the New

Zealand inspired deterministic two period single settlement market clearing mechanism against a

stochastic settlement auction which reduces to another two period single settlement auction with

explicit penalties of deviation, therefore different from the NZTS model. We were able to model

firms’ best responses in these markets, and so find equilibrium behaviour in each. We find that in

our symmetric models, the ISOSP auction provably dominates the NZTS auction when measuring

expected social welfare.
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2 Proposition 4

Proposition. The equilibrium pre-dispatch and spot production quantities of the
firms in the NZTS market are non-negative, i.e.qi ≥ 0 ∀i, and yi,s ≥ 0 ∀i, s
where qi and yi,s are the optimal solutions to problems (1) and (2) respectively
using the equilibrium parameters from (10) and (11).

Proof. To prove the proposition, we first show the equilibrium price intercept of
the supply function of generators (i.e. ai = Ai

Bi
) is less than the price intercept

of the demand function (i.e. Y and Ys). Then, we show this property entails
the non-negativity of equilibrium quantities.

Substituting Ai and Bi from proposition 3.4 into ai = Ai

Bi
, and then taking

the derivative of ai with respect to Z, we achieve

∂ai

∂Z
=

2δ
(
(n − 2)2Z + 2k + n(β + δ + k)

)
(Y − α)

k((n + 2)Z + β − δ + k)2
,

where, k =
√

(n − 2)2Z2 + 2nZ(β + δ) + (β + δ)2. Because n ≥ 2, Z > 0,
β ≥ 0, δ ≥ 0, and α ≤ Y , we have

∂ai

∂Z
≥ 0. (1)

On the other hand, taking the limit of ai as Z approaches infinity, we obtain

lim
Z→∞

ai = α. (2)

Equations (1) and (2) yield

ai ≤ α.

This together with assumption α ≤ Ys , ∀s yields

ai ≤ Ys ∀i, s. (3)

Using ai = Ai

Bi
, we can rewrite equation (3) as

BiYs − Ai ≥ 0 ∀i, s. (4)

Also, using the value of Bi from proposition 3.4, we can show Bi ≥ 0. Thus,
we can conclude

B ≥ 0 (5)

On the other hand, embedding ps into yi,s from proposition 3.2, we obtain

yi,s =
BiYs − Ai

ZB + 1
∀i, s.
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This together with equations (4) and (5) and assumption Z > 0 gives

yi,s ≥ 0 ∀i, s.

From propositions 3.1 and 3.2, we achieve qi =
∑

s θsyi,s. As θs ≥ 0, we
obtain

qi ≥ 0 ∀i

3 The optimal solution to ISOSP problem: proof
of Proposition 5

Proposition. If (q,x, f ,p) represents the solution of ISOSP, then we have

qi =
(Y + ZA)Bi

1 + ZB
− Ai (6)

xi,s =
(Ys − Y )Ri

1 + ZR
(7)

f =
Y + ZA

1 + ZB

ps =
Y + ZA

1 + ZB
+

Ys − Y

1 + ZR

Proof. The Lagrangian function of ISOSP can be represented as follows.

L = −f

(

−Q +
n∑

i=1

qi

)

+
S∑

s=1

θs

(

−ps

(

Q − Cs +
n∑

i=1

xi,s

)

−YsCs +
ZC2

s

2
+

n∑

i=1

(
1
2
dix

2
i,s + ai (qi + xi,s) +

1
2
bi (qi + xi,s)

2

))

Taking derivative with respect to different variables yields to the following
equations.

dL

dqi
= −f +

∑

s

θs (ai + bi (qi + xi,s)) (8)

dL

dxi,s
= θs (−ps + ai + bi (qi + xi,s) + dixi,s) (9)

4



dL

dCs
= θs (ps − Ys + ZCs) (10)

dL

dQ
= f −

∑

s

θsps (11)

dL

dps
= θs

(

−Q + Cs −
∑

i

xi,s

)

(12)

dL

df
= Q −

∑

i

qi (13)

The Lagrangian is evidently a convex function. Thus, for finding the solution
of the stochastic program, we should set all above derivatives to zero.

From (8)

f = ai + biqi +
∑

s

psxi,s. (14)

From (9) and (14)
ps = f + (bi + di)xi,s, (15)

and from (11)
f =

∑

s

θsps. (16)

Now (14), (15) and (16) result in the following conclusion, as it is also
concluded from lemma 4.1.

∑

s

θsxi,s = 0 (17)

(14) and (17) lead to

f = ai + biqi. (18)

Consequently, forward price is independent of the spot market and is re-
solved merely by contract quantities. Though, contract quantities are chosen
by considering different possible spot scenarios.

From (10),

ps = Ys − ZCs, (19)

from (12),

Cs = Q +
∑

i

xi,s, (20)

and from (13),

5



Q =
∑

i

qi (21)

can be concluded.
(17) and (20) lead to

∑

s

θsCs = Q. (22)

(16), (19) and (22) make the following conclusion.

f = Y − ZQ (23)

Now from (18) and (23) we can conclude

qi =
Y − ZQ − ai

bi
. (24)

In consequence, from (21) and summation of qi from (24) over all firms and
by using the transformation (Ai, Bi, Ri), we obtain

Q = (Y − ZQ)B − A.

Therefore,

Q =
Y B − A

1 + ZB
. (25)

Now the following inference can be resulted from (24) and (25).

qi =
(Y + ZA)Bi

1 + ZB
− Ai (26)

Now let us find xi,s. (15), (19) and (20) give

f + (bi + di)xi,s = Ys − ZQ − Z
∑

i

xi,s.

By adding (23) to this equation following equation is resulted.

xi,s =
Ys − Y − Z

∑
i xi,s

bi + di
(27)

Now by getting a summation from (27) and simplifying the resulted equation
we achieve

∑

i

xi,s =
(Ys − Y )R

1 + ZR
.

By inserting this equation in (27), we obtain

xi,s =
(Ys − Y )Ri

1 + ZR
, (28)
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and from (23) and (25), first stage price can be extracted.

f =
Y + ZA

1 + ZB
(29)

One observation about this equation is that contract price is independent of
R, in other words, it is independent of deviating cost in the spot market.

(25), (28) and (29) determine spot price for each scenario.

ps =
Y + ZA

1 + ZB
+

Ys − Y

1 + ZR
(30)

4 The equilibrium of the stochastic settlement
market: proof of Proposition 7

Proposition. The unique symmetric equilibrium quantities of the stochastic
settlement market are as follows.

bi = max{ε,
−Z(n − 2) + β + δ +

√
Z2(n − 2)2 + 2Zn(β + δ) + (β + δ)2

2
− dSO}

(31)

ai =
α − Y + Bi (−Z(Y (n − 2) − (2n − 1)α) + Y β + Z(n − 1)(Znα + Y β)Bi)

Bi (Z(n + 1) + β + Y (n − 1)(Zn + β)Bi)
(32)

Proof. To find a symmetric equilibrium, we can use

A−i = (n − 1)Ai,

B−i = (n − 1)Bi,

R−i = (n − 1)Ri

1
Ri

=
1
Bi

+ dSO.

By putting these equations in the best response functions (from theorem 1)
and solving the resulted equations with respect to Ai and Bi, following equilib-
rium equations is resulted.

Ai =
α − Y + Bi (−Z(Y (n − 2) − (2n − 1)α) + Y β + Z(n − 1)(Znα + Y β)Bi)

Z(n + 1) + β + Y (n − 1)(Zn + β)Bi

1
Bi

= max{ε,
−Z(n − 2) + β + δ +

√
Z2(n − 2)2 + 2Zn(β + δ) + (β + δ)2

2
− dSO}

(33)
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Let us see why equation (33) implies a true equilibrium quantity. Let d̂ =
−Z(n−2)+β+δ+

√
Z2(n−2)2+2Zn(β+δ)+(β+δ)2

2 and R̂ = 1/d̂. If dSO ≤ d̂ − ε, bi =
d̂−dSO (equivalently Ri = R̂ ) satisfies the best response function for Ri. When
dSO > d̂− ε, we must show that the equilibrium bi is equal to ε (or equivalently
equilibrium Ri = Di = 1

d̂+ε
). It means when the other generators j have chosen

Rj = Dj , the best response for the firm i is also to choose Ri = Di, and so
we need to show 1+Z(n−1)Di

Z+β+δ+Z(n−1)(β+δ)Di
≥ Di. Note that Di is a fixed quantity

chosen by the ISO, Thus, Dj = Di.
Define f(x) = 1+Z(n−1)x

Z+β+δ+Z(n−1)(β+δ)x − x. We can easily show that f(x) is a
concave function for x ≥ 0:

f”(x) = −
2Z3(n − 1)2(β + δ)

(Z + β + δ + Z(n − 1)(β + δ)x)3
< 0

Also f(0) = 1
Z+β+δ > 0 and f(R̂i) = 0. Thus for 0 < Di < R̂i, and by

considering concavity of f(x),

f(Di) ≥ 0.

Therefore,

1 + Z(n − 1)Di

Z + β + δ + Z(n − 1)(β + δ)Di
≥ Di.

5 Stochastic settlement yields non-negative equi-
libria: proof of Proposition 8

Proposition. If (q∗,x∗) represents the equilibrium of the stochastic settlement
market, following equations always hold.

∀i, s : q∗i + x∗
i,s ≥ 0

∀i : q∗i ≥ 0

Proof. From (26) and (28), the following equation can be resulted.

yi,s = q∗i + x∗
i,s =

(Y + ZA)Bi

1 + ZB
− Ai +

(Ys − Y )Ri

(1 + ZR)

It is obvious that if yi,s is non-negative for the scenario that has the lowest
Ys, it is non-negative for the other scenarios as well. Thus, we prove this only
for the scenario s′ for which we have Ys′ ≤ Ys for all s. If we assume having at
least two different scenarios with positive probabilities, we have

8



Ys′ < Y. (34)

Let us first define R̂i = 2

−Z(n−2)+β+δ+
√

Z2(n−2)2+2Zn(β+δ)+(β+δ)2
, as we de-

fined in the proof of proposition 4.8. Now consider y
′

i,s′ = minα,δ yi,s′ . Obviously

if we prove that y
′

i,s′ is non-negative, we have also proven the non-negativity of
yi,s. yi,s can be divided to two separate functions of α and δ, such that

dyi,s′

dδ =






if R̂i ≤ Bi :
2
(

Zn+β+δ+
√

Z2(n−2)2+2Zn(β+δ)+(β+δ)2
)
(Y −Ys)

√
Z2(n−2)2+2Zn(β+δ)+(β+δ)2

(
Z(n+2)+β+δ+

√
Z2(n−2)2+2Zn(β+δ)+(β+δ)2

)2

Otherwise :

0
dyi,s′

dα
= −

1 + ZB1(n − 1)
Z(n + 1) + β + ZB1(n − 1)(Zn + β)

The parameters Z, β, and δ are non-negative. Thus, from (34), we can
conclude

dyi,s

dδ
≥ 0,

dyi,s

dα
≤ 0.

Consequently, δ = 0 and α = Ys′ minimize yi,s′ . Note that we have assumed
in this chapter, that y-intercept of cost function (α) is less than y-intercept of
the demand scenarios (Ys′). Thus, we prove that y

′

i,s′ = yi,s′(δ = 0, α = Ys′)
gets non-negative values.

When δ = 0, at β̂ = 1+ZBi(n−2)
Bi(1+ZBi(n−1)) , we have R̂i = Bi. By applying the fact

that R̂i is a decreasing function of β, we can conclude,

Ri =

{
Bi β < β̂

R̂i β ≥ β̂

and

y
′

i,s′ =

{ (Y +ZA)Bi

1+ZB − Ai + (Ys−Y )Bi

(1+ZB) β < β̂
(Y +ZA)Bi

1+ZB − Ai + (Ys−Y )R̂i

(1+ZR̂)
β ≥ β̂

We can also show that equation y
′

i,s′ = 0 only holds at β = β̂. In addition,

y
′

i,s′ is a continuous function. These mean y
′

i,s′ is either entirely positive or

entirely negative in each of [0, β̂] or [β̂,∞). Firstly, we prove that it is positive
in [0, β̂].

We see that
dy

′

i,s′

dAi
< 0. On the other hand,

9



dAi

dβ
=

(Y − α) (1 + Z(n − 1)Bi)
2 (1 + ZnBi)

(Z(n + 1) + δ + Z(n − 1)(Zn + β)Bi)
2 ≥ 0

Therefore, for β < β̂,
dy

′

i,s′

dβ =
dy

′

i,s′

dAi

dAi

dβ is not positive. It means yi,s′ is a non-

increasing function of β in this interval. Considering the fact that y
′

i,s′(β̂) = 0,
we can conclude

y
′

i,s′ ≥ 0 if β ≤ β̂. (35)

Right derivative of y
′

i,s′ at β̂ also has a positive value of
Z2(Y −Ys)Bi(n−1)(1+Z(n−1)Bi)(1+ZnBi)

2
√

Z2(n−2)2+2Znβ+δ2(Z(n+1)+δ+ZBi(−β+2n(Zn+β)+Z(n−1)n(Zn+β)Bi))
2
.

If we add this to the facts that y
′

i,s′(T̂ ) = 0 and y
′

i,s′ is either entirely non-

negative or entirely non-positive for β > β̂, we can conclude that

y
′

i,s′ ≥ 0 if β ≥ β̂ (36)

(35) and (36) can be gathered to conclude

y
′

i,s′ ≥ 0.

Therefore,

yi,s = q∗i + x∗
i,s ≥ 0

We know from Lemma 2 that x∗
i,s is non-positive for at least one-scenario.

Thus,

q∗i ≥ 0

10



6 Equilibrium of the stochastic settlement mech-
anism with non-negativity constraints: Theo-
rem 3

6.1 SP clearing problem with non-negativity constraints

The SP clearing problem with non-negativity constraints is

ISOSP :

min z =
S∑

s=1

θs

(
n∑

i=1

[

ai(qi + xi,s) +
b

2
(qi + xi,s)

2 +
di

2
x2

i,s

]

− (YsCs −
Z

2
C2

s )

)

s.t.
∑

i

qi − Q = 0

Q +
∑

i

xi,s − Cs = 0 ∀s ∈ {1, . . . , S}

qi + xi,s ≥ 0 ∀i, s ∈ {1, . . . , S}

ISOSP is a convex optimization problem as the objective function of ISOSP
is a convex function, and its constraints are linear. Therefore, solving the KKT
conditions of this problem is equivalent to solving ISOSP.

6.1.1 KKT of ISOSP

To find the KKT conditions we can use the Lagrangian function

L =
S∑

s=1

(

θs

(
n∑

i=1

(

ai (xi,s + qi) +
bi

2
(xi,s + qi)

2 +
di

2
x2

i,s

)

−

(

CsYs −
ZC2

s

2

)

+ ps

(

Q +
n∑

i=1

xi,s − Cs

))

−
n∑

i=1

ei,s (xi,s + qi)

)

− f

(
n∑

i=1

qi − Q

)

.

To produce the building blocks of the KKT condition, we can use the partial
derivations of L with respect to the decision variables.
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dL

dqi
= −f −

S∑

s=1

ei,s + (ai + bqi) + b

S∑

s=1

θsxi,s

dL

dxi,s
= −ei,s + θs (−ps + ai + biqi + (bi + di)xi,s)

dL

dCs
= (ps + ZCs − Ys) θs

dL

dQ
= f −

∑

s

θsps

dL

dps
= θs

(

Cs −

(

Q +
n∑

i=1

xi,s

))

dL

df
= Q −

n∑

i=1

qi

dL

dei,s
= −qi − xi,s

Thus, KKT of this problem can be represented as

− f −
S∑

s=1

ei,s + (ai + biqi) + bi

S∑

s=1

θsxi,s = 0 ∀i ∈ {1, . . . , n} [C1]

Q =
n∑

i=1

qi [C2]

Cs =

(

Q +
n∑

i=1

xi,s

)

∀s ∈ {1, . . . , S} [C3]

ps = (Ys − ZCs) ∀s ∈ {1, . . . , S} [C4]

f =
S∑

s=1

θsps [C5]

ei,s = θs (−ps + ai + biqi + (bi + di)xi,s) ∀i ∈ {1, . . . , n} [C6]

∀s ∈ {1, . . . , S}

ei,s(qi + xi,s) = 0 ∀i ∈ {1, . . . , n} [C7]

∀s ∈ {1, . . . , S}

ei,s ≥ 0 ∀i ∈ {1, . . . , n} [C8]

∀s ∈ {1, . . . , S}

qi + xi,s ≥ 0 ∀i ∈ {1, . . . , n} [C9]

∀s ∈ {1, . . . , S}.

If we replace the value of f and ei,s from [C5] and [C6] into [C1], constraint
[C1] can be replaced with

∑S
s=1 θsxi,s = 0.
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6.1.2 Firms’ optimisation problem

Problem WNN[j] represents the optimization problem solved by firm j to max-
imize its profit, subject to KKT conditions of ISO’s optimization problem.

WNN[j]:

max uj =
S∑

s=1

θs

(

ps(qj + xj,s)−

(

αj (qj + xj,s) +
βj

2
(qj + xj,s)

2 +
δj

2
xj,s

2

))

s.t.
S∑

s=1

θsxi,s = 0 ∀i ∈ {1, . . . , n} [C1]

Q =
n∑

i=1

qi [C2]

Cs =

(

Q +
n∑

i=1

xi,s

)

∀s ∈ {1, . . . , S} [C3]

ps = (Ys − ZCs) ∀s ∈ {1, . . . , S} [C4]

f =
S∑

s=1

θsps [C5]

ei,s = θs (−ps + ai + biqi + (bi + di)xi,s) ∀i ∈ {1, . . . , n} [C6]

∀s ∈ {1, . . . , S}

ei,s(qi + xi,s) = 0 ∀i ∈ {1, . . . , n} [C7]

∀s ∈ {1, . . . , S}

ei,s ≥ 0 ∀i ∈ {1, . . . , n} [C8]

∀s ∈ {1, . . . , S}

qi + xi,s ≥ 0 ∀i ∈ {1, . . . , n} [C9]

∀s ∈ {1, . . . , S}

To make the optimization problem look simpler, we can replace the values
of Q, Cs, and f from [C2], [C3], and [C5] in the other equations. This simplifies

13



WNN to the following shape.

WNN[j]:

max uj =
S∑

s=1

θs

(

ps(qj + xj,s)−

(

αj (qj + xj,s) +
βj

2
(qj + xj,s)

2 +
δj

2
xj,s

2

))

s.t.
S∑

s=1

θsxi,s = 0 ∀i ∈ {1, . . . , n} [C1]

ps = Ys − Z

(
n∑

h=1

qh +
n∑

h=1

xh,s

)

∀s ∈ {1, . . . , S} [C4]

ei,s = −θs (−ps + ai + biqi + (b + di)xi,s) ∀i ∈ {1, . . . , n} [C6]

∀s ∈ {1, . . . , S}

ei,s(qi + xi,s) = 0 ∀i ∈ {1, . . . , n} [C7]

∀s ∈ {1, . . . , S}

ei,s ≥ 0 ∀i ∈ {1, . . . , n} [C8]

∀s ∈ {1, . . . , S}

qi + xi,s ≥ 0 ∀i ∈ {1, . . . , n} [C9]

∀s ∈ {1, . . . , S}

With a similar process, the optimization problem of firm j in a stochastic market
clearing mechanism without non-negativity constraints can be found as

WONN[j]:

max uj =
S∑

s=1

θs

(

ps(qj + xj,s)−

(

αj (qj + xj,s) +
βj

2
(qj + xj,s)

2 +
δj

2
xj,s

2

))

s.t.
S∑

s=1

θsxi,s = 0 ∀i ∈ {1, . . . , n} [C1]

ps = Ys − Z

(
n∑

h=1

qh +
n∑

h=1

xh,s

)

∀s ∈ {1, . . . , S} [C4]

ei,s = θs (−ps + ai + biqi + (bi + di)xi,s) ∀i ∈ {1, . . . , n} [C6]

ei,s = 0 ∀i ∈ {1, . . . , n} [C11]

∀s ∈ {1, . . . , S}.

Also, we introduce a relaxation to WNN, which we use later in proofs of
our theorems. We eliminate constraint [C7]: ei,s(qi + xi,s) = 0, and limit
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the constraint [C9]: ∀i, qi + xi,s ≥ 0 to the optimizer generator j to obtain a
relaxation problem

RWNN:

max uj =
S∑

s=1

θs

(

ps(qj + xj,s)−

(

αj (qj + xj,s) +
βj

2
(qj + xj,s)

2 +
δj

2
xj,s

2

))

s.t.
S∑

s=1

θsxi,s = 0 ∀i ∈ {1, . . . , n} [C1]

ps = Ys − Z

(
n∑

h=1

qh +
n∑

h=1

xh,s

)

∀s ∈ {1, . . . , S} [C4]

f =
S∑

s=1

θsps [C5]

ei,s = θs (−ps + ai + biqi + (bi + di)xi,s) ∀i ∈ {1, . . . , n} [C6]

∀s ∈ {1, . . . , S}

ei,s ≥ 0 ∀i ∈ {1, . . . , n} [C8]

qj + xj,s ≥ 0 ∀s ∈ {1, . . . , S}. [C12]

Now, we prove three lemmas which help us to demonstrate the final theorem.

Lemma 6.1. If for every i 6= j(j is the optimizer generator), ai and bi has
the same value, then the constraint ei,s ≥ 0 (for every i 6= j) in RWNN can be
replaced with ei,s = 0 without reducing the optimal value of RWNN.

Proof. We prove the lemma by contradiction. Assume there exist a point ν =
(aj , bj , q, x, p, e) with at least one ei′,s′ > 0 (i 6= j) and higher objective value
than any feasible solution with e = 0.

Consider ν′ = (a′
j , b

′
j , q

′, x′, p′, e′) defined as follows.
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q′i =






qi i = j

qi +
Z
∑

h 6=j
∑

w eh,w
Z(n−1)+bi

−
∑

w ei,w

bi
i 6= j

(37)

x′
i,s =

{
xi,s i = j

xi,s +
∑

w ei,w−
ei,s
θs

bi+di
−

Z(
∑

h 6=j

∑
w eh,w−

∑
h 6=j

eh,s
θs

)

(Z(n−1)+bi+di)(bi+di)
i 6= j

(38)

a′
j ≥max

s

{

Z

(
∑

h 6=j

∑

w

eh,w

(
1

Z(n − 1) + bi
−

1
Z(n − 1) + bi + di

)

+

∑
h 6=j

eh,s

θs

Z(n − 1) + bi + di

)

+ aj

}

(39)

d′
j =dj (40)

Firstly, we show this is a feasible solution.

∑

s

θsx
′
i,s =

{∑
s θsxi,s i = j

∑
s θsxi,s +

∑
w ei,w−

∑
s θs

ei,s
θs

bi+di
−

Z(
∑

h 6=j

∑
w eh,w−

∑
s θs

∑
h 6=j

eh,s
θs

)

(Z(n−1)+bi+di)(bi+di)
i 6= j

Extra simplifications yields to

∀i :
∑

s

θsx
′
i,s = 0 (41)

After substituting the value of q′h from (37) into
∑

h 6=j q′h and slightly sim-
plifying the resulted equation, we get

∑

h 6=j

q′h =
∑

h 6=j

qh −

∑
h 6=j

∑
w eh,w

Z(n − 1) + bi
(42)

The same analysis on equation (38) gives us the following equation.

∑

h 6=j

x′
h,s =

∑

h 6=j

xh,s +

∑
h 6=j

∑
w eh,w −

∑
h 6=j

eh,s

θs

Z(n − 1) + bi + di
(43)

p′s can be obtained combining equations [C4], (42), and (43).

p′s =ps − Z

(

−

∑
h 6=j

∑
w eh,w

Z(n − 1) + bi
+

∑
h 6=j

∑
w eh,w −

∑
h 6=j

eh,s

θs

Z(n − 1) + bi + di

)

=ps + Z

(
∑

h 6=j

∑

w

eh,w

(
1

Z(n − 1) + bi
−

1
Z(n − 1) + bi + di

)

(44)

+

∑
h 6=j

eh,s

θs

Z(n − 1) + bi + di

)
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Considering the fact that ei,s, Z, bi, and di have non-negative values,

p′s ≥ ps (45)

From (37), (38), (44), and [C6], ei,s can be obtained as follows.

e′i,s =






ei,s + θs(−p′s + ps + a′
j − aj) i = j

ei,s + θs

(

− Z
∑

h 6=j

∑
w eh,w

(
1

Z(n−1)+bi
− 1

Z(n−1)+bi+di

)
i 6= j

−Z
∑

h 6=j

eh,s
θs

Z(n−1)+bi+di
+

Z
∑

h 6=j

∑
w eh,w

Z(n−1)+bi
−
∑

w ei,w

+
∑

w ei,w − ei,s

θs
−

Z(
∑

h 6=j

∑
w eh,w−

∑
h 6=j

eh,s
θs

)

Z(n−1)+bi+di

)

This simplifies to

e′i,s =

{
e′j,s ≥ 0 i = j

0 i 6= j

Thus, the constraint [C8] is also satisfied. As q′j = qj , x′
j,s = xj,s, and ν is a

feasible solution, constraints [C12] are also fulfilled.
In sum, ν′ is a feasible solution.
On the other hand, a comparison between the u′

j and uj demonstrates that
ν′ gives a better objective:

u′
j − uj =

∑

s

θs(p
′
s − ps)(qj + xj,s).

With qj + xj,s ≥ 0, as concluded from [C12], and p′s − ps ≥ 0 as resolved in
(45)

u′
j ≥ uj

This contradicts the initial assumption, which proves the lemma.

Lemma 6.2. RWNN can be simplified to the following optimization problem.
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RWNN:

max uj = fqj +
S∑

s=1

θs(ps − f)xj,s

−

(

αjqj +
βj

2
q2
j +

βj + δj

2

S∑

s=1

θsxj,s
2

)

s.t.
S∑

s=1

θsxi,s = 0 ∀i ∈ {1, . . . , n} [C1]

ps = Ys − Z

(
n∑

h=1

qh +
n∑

h=1

xh,s

)

∀s ∈ {1, . . . , S} [C4]

f =
S∑

s=1

θsps [C5]

ei,s = θs (−ps + ai + biqi + (bi + di)xi,s) ∀i ∈ {1, . . . , n} [C6]

∀s ∈ {1, . . . , S}

ei,s ≥ 0 ∀i ∈ {1, . . . , n} [C8]

qj + xj,s ≥ 0 ∀s ∈ {1, . . . , S} [C12]

Proof. The first part of the objective function is the optimizer’s income, which
is equal to

S∑

s=1

θsps(qj + xj,s) =
S∑

s=1

θspsqj +
S∑

s=1

θspsxj,s

=fqj +
S∑

s=1

θsfxj,s +
S∑

s=1

θs(ps − f)xj,s From [C5]

=fqj +
S∑

s=1

θs(ps − f)xj,s + f

S∑

s=1

θsxj,s

=fqj +
S∑

s=1

θs(ps − f)xj,s From [C1]

18



The rest of the objective function can also be simplified similarly, as follows.

Generating Cost =
S∑

s=1

θs

(

αj (qj + xj,s) +
βj

2
(qj + xj,s)

2 +
δj

2
xj,s

2

)

=αjqj +
βj

2
q2
j +

βj + δj

2

S∑

s=1

θsxj,s
2

+ (αj + βjqj)
S∑

s=1

θsxj,s

=αjqj +
βj

2
q2
j +

βj + δj

2

S∑

s=1

θsxj,s
2 From [C1]

Lemma 6.3. If for every i 6= j(j is the optimizer generator), ai and di has
the same value, then the optimal solution to WONN is at least as good as the
optimal value to RWNN.

Proof. To prove the lemma, we find the optimal solution to RWNN, while we
ignore the non-negativity constraint qj + xj,s ≥ 0. Thus, this point gives an
objective value as good as (possibly better than) the optimal point. Then we
show this point is a feasible solution to WONN, which proves the lemma.

From lemma 6.2 we have

ei,s = θs

(

−Ys + Z

(
n∑

h=1

qh +
n∑

h=1

xh,s

)

+ ai + biqi + (bi + di)xi,s

)

.

To simplify the equations we use some transformations. Let Ri = 1
(bi+di)

,

and Ai = ai

bi
. Also, let A and R denote

∑n
h=1 Ah, and

∑n
h=1 Rh respectively.

Then, constraint [C6] looks like

ei,s = θs

(

−Ys + Z

(
n∑

h=1

qh +
n∑

h=1

xh,s

)

+
1
Ri

xi,s + bi (Ai + qi)

)

. (46)

A summation over different scenarios gives

S∑

w=1

ei,w = −Y + Z

n∑

h=1

qi + (Ai + qi) bi (47)

From lemma 6.1, the constraints ei,s = 0 for every i 6= j and s can be
replaced with ei,s ≥ 0 in RWNN. On the other hand, from the assumption we
know that Ai has a fixed value for every i 6= j. As a result, equation (47) is
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used to show that qi must have a fixed value for every i 6= j. Thus, equation
(47) can be re-written as

0 = −Y + Z ((n − 1)qi + qj) + (Ai + qi) bi (48)

With a similar argument, we can show that xi,s also has the same value for
every i 6= j. Equation (46), thus, can be represented as

0 = θs

(

−Ys + Z ((n − 1)qi + qj + (n − 1)xi,s + xj,s) +
1
Ri

xi,s + bi (Ai + qi)

)

(49)

Solving equations (48) and (49), we find the values of qi and xi,s as functions
of qj and xj,s.

qi =
Y − biAi − Zqj

bi + (n − 1)Z

xi,s = −
Ri (Y − Ys + Zxj,s)

1 + (n − 1)ZRi

(50)

From (50) we can also calculate the values of f and ps − f as functions of qj

and xj,s.

f =
bi (Y + (n − 1)ZAi − Zqj)

bi + (n − 1)Z

ps − f =
−Y + Ys − Zxj,s

1 + (n − 1)ZRi

(51)

Inserting these values into the utility function from lemma 6.2 simplifies the
utility function to

uj =

(
bi (Y + (n − 1)ZAi − Zqj)

bi + (n − 1)Z
− αj −

βj

2
qj

)

qj

+
S∑

s=1

θs

(
−Y + Ys − Zxj,s

1 + (n − 1)ZRi
−

βj + δj

2
xj,s

)

xj,s

As Z, αj , βj , and Ri have non-negative values, uj is a concave function of
qj and xj . Therefore, ignoring the rest of the constraints, the optimal value of
qj and xj,s can be found using first order conditions.

First order conditions for qj and xj,s gives
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q∗j =
biY + (n − 1)biZAi − (bi + (n − 1)Z)αj

2biZ + (bi + (n − 1)Z)βj
(52)

x∗
j,s =

Ys − Y

2Z + (1 + (n − 1)ZRi) (βj + δj)
. (53)

Now we need to show that we can always find Aj and Rj , so that this value
is a feasible solution to WONN and yields ej,s = 0. To do so, we first calculate
ej,s

θs
−
∑

w ej,w for all s. From (46), (47), and (52)

ej,s

θs
−

S∑

w=1

ej,w =Y − Ys +
xj,s

Rj
+ Z ((n − 1)xi,s + xj,s)

=
(Y − Ys) (−1 + Rj (Z + βj + δj) + (n − 1)ZRi (−1 + Rj (βj + δj)))

Rj (1 + (n − 1)ZRi) (2Z + (1 + (n − 1)ZRi) (βj + δj))
(54)

It is always possible to choose Rj as follows to ensure that ej,s

θs
−
∑

w ej,w = 0.
Note that this does not change either of production quantities or prices. This
value of Rj is

Rj =
1 + (n − 1)ZRi

Z + (1 + (n − 1)ZRi) (βj + δj)

We can also choose Aj so that
∑

w ej,w = 0 without changing any production
quantity and thus any prices. From (47) and (50)

S∑

w=1

ej,w = − Y + Z ((n − 1)qi + qj) + bi (Ah + qh)

= − Y + bi (Aj + qj) +
(n − 1)Z (Y − biAi) + biZqj

bi + (n − 1)Z

(55)

Solving
∑

w ej,w = 0 for Aj gives

Aj =
−biY (bi + (n − 2)Z) + (bi + (n − 1)Z) ((bi + nZ)αj + Y βj)

(bi + (n − 1)Z) (2biZ + (bi + (n − 1)Z)βj)

+
−(n − 1)ZAi (bi(bi + (n − 2)Z) − (bi + (n − 1)Z)βj)

(bi + (n − 1)Z) (2biZ + (bi + (n − 1)Z)βj)

These Aj and Rj ensures

S∑

w=1

ej,w =0

ej,s

θs
−

S∑

w=1

ej,w =0

⇒ ∀s : ej,s = 0
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Thus, constraints [C6] and [C8] are met in WONN and RWNN.
From (52) we derive

∑
s θsxj,s = 0. We can use the fact that

∑
s θsxj,s = 0

to show that for i 6= j also
∑

s θsxi,s = 0 (in equation (50)). So, this optimal
point is feasible in [C1].

In sum, the constructed point is feasible to WONN, and gives an objective
value at least as good as RWNN.

Now, we can use the above lemmas to prove a theorem that shows using
the equilibrium of the simplifies game without the non-negativity constraints
instead of the equilibrium of the original game is justifiable.

Theorem. The equilibrium of the symmetric SFSP game without the non-
negativity constraints in ISO’s problem is also the equilibrium of SFSP game
with the non-negativity constraints.

Proof. To prove the theorem, we should show that if all generators offer the
equilibrium values of ai and dj none of them are willing to deviate from it.
Equivalently, if in WNN ai and di are equal to the equilibrium of the SFSP
game without the non-negativity constraints for all i 6= j, then optimal aj and
dj are also equal to equilibrium values of this game.

The equilibrium of SFSP without non-negativity constraints is equal to the
optimal value of WONN when every non-optimizer generator has offered the
equilibrium values of the game. Thus, we prove that the optimal value of WONN
is also optimal to WNN.

Firstly, lemma 6.3 states that if the optimal solution to WONN is feasible
to RWNN, then, it is also the optimal solution to RWNN. In our problem, from
theorem 4.9 we know that the optimal solution to WONN holds both qi ≥ 0
and qi + xi,s ≥ 0. The other constraints of RWNN are shared between these
two models. Thus, it is feasible and optimal in RWNN.

On the other hand, every feasible solution to WNN is feasible in RWNN. So,
if this solution (which is the optimal solution to RWNN) is feasible to WNN,
then it is also optimal to WNN. From the theorem 4.9, we know that qi ≥ 0 and
qi +xi,s ≥ 0 for all i, as it is the equilibrium of the game without non-negativity
constraints. This means this point is feasible in [C8] and [C9]. On the other
hand, we know that ei,s = 0 for all i, as it is the optimal solution to WONN.
This shows it also holds [C7]. The other constraints are common and thus met.
In sum, This point is feasible and therefore optimal to WNN.

Thus, no generator is willing to deviate from this point unilaterally, and this
is the equilibrium of WNN.

7 Computations for the case with zero intercept
(similar to Green 1996)

The following is the outline of the computations for comparison of NZTS and
ISOSP but using linear supply functions with intercept zero (as per Green). We
have the same linear demand function and generator cost structure as before.
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This time however the generators are restricted to offers of the form p = 1
αq

for firm i. Following the notation of Green, we allow for demand curves of
the form D(p) = Ds − γp, where Ds is the realization of demand in scenario
s. Throughout this computation, we assume symmetry and we will assume a
duopoly.

Note: There is a correspondence between our notation here and that used
in the main body of the paper for general affine supply functions, however,
transformations of the kind used in the main paper make the computations in
this case cumbersome. We will state the correspondence here and return to the
notation used by Green for this special case.

Green’s notation notation used for the affine case
α 1

bi

γ 1
Z

D Y
Z

σ2
D

σ2
Y

Z2

For NZTS,
We set up the market clearing problems for the two periods of NZTS and

derive that

ps =
Ds

2α + γ
(56)

yi,s =
αDs

2α + γ
(57)

qi =
Dα

2α + γ
(58)

f =
D

2α + γ
. (59)

Knowing the results of market clearing, a firm can proceed to optimize their
profit, given the other firm’s bids. We assume the firm’s fixed cost here is zero.
This renders the following optimization problem.

max
α

E[psyi,s −
β

2
−

δ

2
(yi,s − qi)

2]

Using the expressions in (56) and substituting into the profit maximization
problem above, subsequently taking the expectation, we obtain

max
α

1
2(2α + γ)2

(α2(−βσ2
D − βD − δσ2

D) + 2(σ2
D + D2)α)

Here σ2
D is the variance of Ds. Using Mathematica (notebooks available upon

request), we obtain that the objective is quasi-concave with a maximizer located
at

α =
(α− + γ)(D2 + σ2

D)
(1 + β(α− + γ))D2 + (1 + β(α− + γ) + α−δ + γδ)σ2

D
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where α− is the given slope of the opponent’s supply offer. Of course the anal-
ogous expression for α− will provide the maximizer for the opponent. Solving
these together yields the equilibrium values of the respective slopes. In partic-
ular, under the assumption of symmetry

α =

√
γ ((4 + βγ)D2 + (4 + βγ + γδ)σ2

D) (δσ2
D + β(D2 + σ2

D)) − βγ(D2 + σ2
D) − γδσ2

D

2(δσ2
D + β(D2 + σ2

D)

The quasi-concavity is proved by observing that the derivative of the profit
function is increasing to the left of the critical α and decreasing to the right of
it.

We can substitute this α into the (56), and then substitute these expressions
in the total welfare for NZTS below.

TWNZTS =
1 − γH

2
(1−

γ(1 − γH)
2

)(σ2
D + D2)−

c + δ

8
(1− γH)2(2σ2

D + D2)

where

H =
βD2 + (β + δ)σ2

D√
γ(βD2 + (β + δ)σ2

D)((4 + βγ)D2 + (4 + γ(β + δ))σ2
D)

.
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For ISOSP, In this section we return to the notation used in the main body
of the paper as the transformations used there would assist the computations
here.

Here the stochastic programming market clearing mechanism separates into
2 terms, just like that of the main body of the paper (the only difference is that
the supply function intercepts are 0 and this does not change anything). We
derive that

qi =
Y Bi

1 + ZB
(60)

f =
Y

1 + ZB
. (61)

xi,s =
(Y s − Y )Ri

1 + ZR
(62)

ps =
Y

1 + ZB
+

(Y s − Y )
(1 + ZB)

(63)

Recall here that Bi = 1
bi

= α (in the notation of Green) and Ri = 1
di

where di

is the deviation penalty bid in. Similar to the above, we assume symmetry and
duopoly throughout computing the equilibrium here.

Using the expressions in (60) and substituting into the expression for the
firm’s expected profit, we obtain the objective in the profit maximization prob-
lem below

maxBi,Ri
ui =

2BiY
2 − B2

i Y 2β

2(1 + ZBi + ZB−i)2
+

(−2Ri + R2
i (β + δ))(Y 2 − E[Y 2

s ])
2(1 + ZRi + ZR−i)2

Note that the objective function (expected utility of firm i), decouples in Bi

and Ri. Therefore very similar to the main body of the paper, we establish
quasi-concavity in each variable and obtain the maximizing values of Bi and
Ri.

We used Mathematica to find the expressions for derivatives of ui.

dui

dBi
= −

Y 2(−1 − ZB−i + Bi(Z + β + ZβB−i))
(1 + ZBi + ZB−i)3

Note that the numerator is linear in Bi. The stationary point for Bi is then

B∗
i =

1 + ZB−i

Z + β + ZβB−i

This derivative increases for values of Bi to the left of B∗
i and decreases to the

right. This establishes the quasi-concavity the first part.
Similarly we can compute dui

dRi
, find the critical point and establish quasi-

concavity in Ri. The critical point R∗
i is given by

R∗
i =

1 + ZR−i

Z + β + δ + ZβR−i + ZδR−i
.
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Now, ui being separable in Bi and Ri is proved to be quasi-concave and the
optimal solution to the profit maximization problem is given by B∗

i , R∗
i .

We can now use our assumption of symmetry (and duopoly) to solve for the
equilibrium values and obtain:

BE
i =

2

β +
√

β(4Z + β)
,

RE
i =

√
4Z + β + δ −

√
β + δ

2Z
√

β + δ
.

We can then compute the equilibrium welfare value. This expression which
we refer to as TW − ISOSP is given by

2Y 2

4Z + β
+

2σ2
Y

4Z + β + δ
+

4Y 2β

(4Z + β +
√

β(4Z + β))2

+
σ2

Y (β + δ)(Z(4
√

β + δ − 2
√

4Z + β + δ) + (β + δ)(
√

β + δ −
√

4Z + β + δ)

2Z2(4Z + β + δ)
3
2

.

In the Mathematica notebook (ISOSP-Eu-Eqm.nb), we have converted the
expression above to use Green parameters and in the notebook (Comparison-
welfare.nb) we have a comparison with the total welfare rendered from NZTS.
One can obtain ranges which each of the welfare expressions are greater than
the other; these are visualized using the manipulate command. This of course
does not happen when we allow for an intercept in the supply functions.

Specifically, if we fix β = 2.0, δ = 4.0, D = 10, σ2
D = 1, then

TWD = TWNZTS − TWISOSP =

{
−4.26892 if γ = 2
1.54577 if γ = 8

In the notation used in the main body of the paper, this translates to:

γ = 2, (TWD = -4.26892) γ = 8, (TWD = 1.54577)
Y = 5 Y = 1.25

σ2
Y = 0.25 σ2

Y = 0.0625
Z = 0.5 Z = 0.125
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Best response curves
From propositions 3.1 and 3.2, we have 

Q
EY cB cA

1 Z cB

qi_
EY Z cA Bi

1 Z cB
Ai

xi_,s_
Ys EY Ri

1 Z cR

yi_,s_ qi xi,s

f
EY Z cA

1 Z cB

ps_ f
Ys EY

1 Z cR

S 1
s 1

S 1

s

cA Ai A i

cB Bi B i

cR Ri R i

ui_ Simplify f qi
s 1

S

s ps xi,s qi xi,s
2

qi xi,s
2

2
xi,s2 ;

welfare
s 1

S

s Ys n y1,s
Z

2
n y1,s

2
n y1,s

2
y1,s2

2
x1,s2 ;

FullSimplify D ui, Ri, Ai , EY
s 1

S

s Ys, S 1
s 1

S 1

s

0

FullSimplify D ui, Ri, Bi , EY
s 1

S

s Ys, S 1
s 1

S 1

s

0

Therefore, ui Ai, Bi, Ri gi Ai, Bi hi Ri .

FullSimplify D ui, Ai, Ai

1 Z B i 2 Z Z B i

1 Z B i Bi
2

8 Computations of firms and equilibrium values
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FullSimplify Solve D ui, Ai 0, Ai , EY
s 1

S

s Ys, S 1
s 1

S 1

s

Ai

1 Z B i EY Z A i Z B i Z EY Z Z Z EY B i Z A i Z Z B i Bi

1 Z B i 2 Z Z B i

Ai
1 Z B i EY Z A i Z B i Z EY Z Z Z EY B i Z A i Z Z B i Bi

1 Z B i 2 Z Z B i

1 Z B i EY Z A i Z B i Z EY Z Z Z EY B i Z A i Z Z B i Bi

1 Z B i 2 Z Z B i

FullSimplify D ui, Bi

0

The fact that derivative of ui  with respect to Bi  is zero means ui Ai Bi , Bi, Ri and gi Ai Bi , Bi  is independant of Bi.

Therefore, gi Ai Bi , Bi  is a constant dependant on the cost and demand parameters.

FullSimplify D ui, Ri , EY
s 1

S

s Ys, S 1
s 1

S 1

s

1 Z Ri Z R i 1 Ri EY2 s 1
S Ys

2
s

1 Z R i Ri
3

The expression 1 Z Ri Z R i 1 Ri  is a linear increasing function of Ri.  Thus, it is negative

bellow its zero and is positive after its zero.  The denominator 1 Z R i Ri
3  is positive, and EY2 s 1

S
s Ys2  is

negative (because of Jensen's inequality). In sum,  dui

dRi
 is positive before its zero and is negative after this point. Thus, it is a

quasi-concave function of Ri.

FullSimplify Solve D ui, Ri 0, Ri , EY
s 1

S

s Ys, S 1
s 1

S 1

s

Ri
1 Z R i

Z Z R i

Ri must be less than Bi, and ui is a quasi-concave function of Ri. Therefore, the optimal Ri is

Ri Min Bi,
1 Z R i

Z Z R i

Finding a symmetric equilibrium

FullSimplify Solve Ai
1 Z B i EY Z A i Z B i Z EY Z Z Z EY B i Z A i Z Z B i

Bi 1 Z B i 2 Z Z B i , A i n 1 Ai , Ai, A i

Ai
1 Z B i EY Z B i Z EY Z Z Z EY B i Bi

1 Z B i Z n Z Z B i 1 n Z Z Z B i Bi
,

A i

1 n 1 Z B i EY Z B i Z EY Z Z Z EY B i Bi

1 Z B i Z n Z Z B i 1 n Z Z Z B i Bi



n .

FullSimplify Solve Ri
1 Z R i

Z Z R i

, R i n 1 Ri , Ri, R i

Ri
2

2 n Z 2 n 2 Z2 2 n Z 2

,

R i

2 n Z 2 n 2 Z2 2 n Z 2

2 Z
,

Ri
2

2 n Z 2 n 2 Z2 2 n Z 2

,

R i

2 n Z 2 n 2 Z2 2 n Z 2

2 Z

The expression 2

2 n Z 2 n 2 Z2 2 n Z 2

 is negative. However, Ri
2

2 n Z 2 n 2 Z2 2 n Z 2

is positive and acceptable. As we show in the paper, the equilibrium Ri is Min Bi,
2

2 n Z 2 n 2 Z2 2 n Z 2
.



!The two settlement model with asymmetric generators and non-negativity constraints.;
MODEL:

DATA:
NumProblems= @OLE('TS1.xls', 'GENERATORS!K16');
ENDDATA

!The similar parameters to the parameters defined in the original paper have a similar 
definition.
The rest of parameters are defined as comments.;
SETS:
GENERATORS :  b , alpha , beta , delta , q , a ,d, a_fixed,b_fixed,d_fixed, Opt, 
optimizer, profit,lambda;
!
***a_fixed, b_fixed, d_fixed: The offered parametters of the generators in the last run. 
***opt: If the current decision of the optimizing generator is similar (with a precision) 
to its decision in the last run, it is 1, otherwise it is zero.
***optimizer: in each round it is one for the optimizing generator and zero for the 
others.
***Lambda: The dual variable of the non-negativity constraint q_{i}>=0.
;
SCENARIOS : Y, theta, transCoef, p, C;
GEN_SCEN (GENERATORS, SCENARIOS): x, e, boundary ;
! 
***e: The dual variable of the non-negativity consttraint q_i+x_{i,s}>=0.
***boundary: A binary variable to linearize the orthogonality constraint e_{i,s}(q_{i}+x_
{i,s})=0. 
;
OPTIMIZERS  (GENERATORS); 
!
The set of the optimizer generator in each step of the dynamic process.
;
FIXEDGENS(GENERATORS) | #NOT# @IN( OPTIMIZERS, &1) ;
!All non-optimizer generators;
ROWS /1..100/:alp,bet,del,op,a_f,b_f,d_f ,tet,coe,Y_f,Z_f,walpha ,wbeta ,wdelta 
,woptimizer ,wa_fixed ,wb_fixed,wd_fixed ,wb ,wa ,wd ,wq ,wx1 ,wx2 
,wprofit,wf,wp1,wp2,wwelfare,wrep,wst1,wst2,wtet,wcoe,wY_f,wZ_f;
!Degined for the purpose of collecting result of different runs of the model, and 
outputting the results.;

ENDSETS

! Here is the data.
The data is read from an Excel file.
;
DATA: 
GENERATORS, OPTIMIZERS= @OLE( 'TS1.xls', 'GENERATORS','OPTIMIZERS');
SCENARIOS = @OLE('TS1.xls','SCENARIOS');
theta, transCoef, Y = @OLE('TS1.xls','SCENSDATA');
Z, MyBigM = @OLE('TS1.xls' , 'Z' , 'MyBigM');
alp,bet,del,op,a_f,b_f,d_f = @OLE('TS1.xls','GENERATORS!D16:J116');
tet,coe,Y_f,Z_f = @OLE('TS1.xls','GENERATORS!N16:Q116');

precision =@OLE('TS1.xls','GENERATORS!R18');
!A tolerance that determines the smallest value that we consider as a change in strategy. 
In other words, if the change in a firm's strategy is less than this, we count that as a 
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no change in the strategy.;

maxRep=@OLE('TS1.xls','GENERATORS!R19');
!If we do not find an equilibrium after "maxRep" steps, we stop searching for it.;

ENDDATA

SUBMODEL TS1:
!This is the optimization model solved by a firm to maximize profit, assuming that the 
strategy set of all other firms are fixed. ;
@FOR(GENERATORS: @FREE(a));
@FOR(SCENARIOS: @FREE(p));
@FOR(GEN_SCEN: @FREE(x));
@FREE(f);

[obj] MAX = @sum (GENERATORS(i): optimizer(i)* (  f * q(i)+ @sum (SCENARIOS(s): (theta(s)*
(p(s)* x(i,s)-(alpha(i) * (q(i)+x(i,s))+ beta(i)/2 * (q(i)+x(i,s))^2 + delta(i)/2 *x(i,s)^
2)))  ) ));
! The objective;

!The constraints include constraints of a generator on his offered supply function and KKT
consitions of the ISO's optimization problem;
@FOR (GENERATORS(i):

-f+a(i ) +b(i)*q(i)-lambda(i)=0;
 q(i)*lambda(i)=0;
);

@FOR(GEN_SCEN(i,s):
 a(i)-p(s)-e(i,s)+b(i)*(q(i)+x(i,s))=0;
q(i) + x(i,s) >= 0;
[Const_ebin] e(i,s)  <= boundary(i,s)*MyBigM;
[Const_qxbin] q(i)+x(i,s) <= (1-boundary(i,s))*MyBigM;
@BIN(boundary(i,s));

);

@FOR(SCENARIOS(S):
[Const_p_demand] theta(s) * (p(s)+ Z* C(s)-Y(s))  = 0;
[Const_C] theta(s)*(-cQ+C(s)-@sum (GENERATORS(i): x(i,s))) = 0;
);

!Non-optimizing generators should offer their previous offered parameters;
@FOR (GENERATORS(k)|optimizer(k) #EQ# 0 :

a(k)=a_fixed(k);
b(k)=b_fixed(k);

);

- @sum(SCENARIOS(s):theta(s)*Y(s))+f+cQ*Z=0;
cQ - @sum(GENERATORS(h): q(h))= 0;

ENDSUBMODEL

!Calculations and procedure of the dynamic process to find an equilibrium for each of the 
market settings.;
CALC:
@for(ROWS(k):

walpha(k)=0;
wbeta(k)=0;
wdelta(k)=0;
woptimizer(k)=0;
wa_fixed(k)=0;
wb_fixed(k)=0;
wd_fixed(k)=0;
wb(k)=0;
wa(k)=0;



wd(k)=0;
wq(k)=0;
wx1(k)=0;
wx2(k)=0;
wprofit(k)=0;
wf(k)=0;
wp1(k)=0;
wp2(k)=0;
wwelfare(k)=0;
wrep(k)=0;
wst1(k)=0;
wst2(k)=0;
wtet(k)=0;
wcoe(k)=0;
wY_f(k)=0;
wZ_f(k)=0;
);

!Reading different market settings (i.e. case studies or examples).; 
ind=@OLE('TS1.xls','GENERATORS!L16');
@WHILE (ind #LE# NumProblems:
eq=0;
rep=0;
alp1=alp(2*(ind-1)+1);
alp2=alp(2*(ind-1)+2);
bet1=bet(2*(ind-1)+1);
bet2=bet(2*(ind-1)+2);
del1=del(2*(ind-1)+1);
del2=del(2*(ind-1)+2);
op1=op(2*(ind-1)+1);
op2=op(2*(ind-1)+2);
a_f1=a_f(2*(ind-1)+1);
a_f2=a_f(2*(ind-1)+2);
b_f1=b_f(2*(ind-1)+1);
b_f2=b_f(2*(ind-1)+2);
d_f1=d_f(2*(ind-1)+1);
d_f2=d_f(2*(ind-1)+2);
tet1=tet(2*(ind-1)+1);
tet2=tet(2*(ind-1)+2);
coe1=coe(2*(ind-1)+1);
coe2=coe(2*(ind-1)+2);
Y_f1=Y_f(2*(ind-1)+1);
Y_f2=Y_f(2*(ind-1)+2);
Z_f1=Z_f(2*(ind-1)+1);

@OLE('TS1.xls','GENERATORS!D2:j2')=alp1,bet1,del1,op1,a_f1,b_f1,d_f1;
@OLE('TS1.xls','GENERATORS!D3:j3')=alp2,bet2,del2,op2,a_f2,b_f2,d_f2;

@OLE('TS1.xls','SCENARIOS!C2:E2')=tet1,coe1,Y_f1;
@OLE('TS1.xls','SCENARIOS!C3:E3')=tet2,coe2,Y_f2;

@OLE('TS1.xls','OtherParams!B2')=Z_f1;

@for( GENERATORS(i):
Opt(i)=0;

);
! st1 and st2 records the status of the optimization problems i.e. whether it is found a 
global optimal solution or a local optima. These are importnt to ensure that we actually 
find a true equilibrium.;
st1=1000;
st2=1000;
@WHILE (eq #LE# 1 #AND# rep#LE#maxRep:

st1=st2;
alpha, beta, delta, optimizer, a_fixed, b_fixed,d_fixed = @OLE( 'TS1.xls', 

'GENSDATA');
theta, transCoef, Y = @OLE('TS1.xls','SCENSDATA');



Z = @OLE('TS1.xls' , 'Z');
@SOLVE( TS1);

@for(GENERATORS(i)| optimizer(i) #EQ# 1 :
@ifc( a(i) #GE# a_fixed(i)-precision  #AND#  a(i) #LE# a_fixed(i)+precision  

#AND# b(i) #GE# b_fixed(i)-precision  #AND#  b(i) #LE# b_fixed(i)+precision:
Opt(i)=1;

@else
Opt(i)=0;

 );

a_fixed(i) = a(i);
b_fixed(i) = b(i);

);
@for(GENERATORS(i):

@ifc( optimizer(i) #EQ# 1:
optimizer(i)=0;

@else
optimizer(i)=1;

 );
);
st2=@STATUS();
eq = @sum(GENERATORS(i): Opt(i));
@OLE( 'TS1.xls', 'GENSDATA') = alpha, beta, delta, optimizer, a_fixed, b_fixed, 

d_fixed;
rep=rep+1;
@for(GENERATORS(i): 

profit(i) =  f * q(i)+ @sum (SCENARIOS(s): (theta(s)*(p(s)* x(i,s)-(alpha(i) *
(q(i)+x(i,s))+ beta(i)/2 * (q(i)+x(i,s))^2 + delta(i)/2 *x(i,s)^2)))  ) ;

);

!Intermediate output;
welfare = @sum(SCENARIOS(s): theta(s)*(Y(s)*C(s)-Z/2*C(s)^2-@sum(GENERATORS(i): 

alpha(i)*(q(i)+x(i,s))+beta(i)/2*(q(i)+x(i,s))^2+delta(i)/2*x(i,s)^2)));
@OLE( 'TS1.xls', 'GENERATORS!L2:N3') = a, d, q;
@OLE( 'TS1.xls', 'GENERATORS!O2:O3') = @writefor(GEN_SCEN(i,s)|s #EQ# 1: x(i,s));
@OLE( 'TS1.xls', 'GENERATORS!P2:P3') = @writefor(GEN_SCEN(i,s)|s #EQ# 2: x(i,s));
@OLE( 'TS1.xls', 'GENERATORS!Q2:Q3') =profit;
@OLE( 'TS1.xls', 'GENERATORS!R2:R2') = f;
@OLE( 'TS1.xls', 'GENERATORS!S2:T2') = p;
@OLE( 'TS1.xls', 'GENERATORS!U2:U2') = welfare;
@OLE( 'TS1.xls', 'GENERATORS!V2:V2') = rep;
@OLE( 'TS1.xls', 'GENERATORS!W2:W2') = st1;
@OLE( 'TS1.xls', 'GENERATORS!X2:X2') = st2;
@OLE( 'TS1.xls', 'GENERATORS!Y2:Y2') = @write('WNN');

);

!Final output;
welfare = @sum(SCENARIOS(s): theta(s)*(Y(s)*C(s)-Z/2*C(s)^2-@sum(GENERATORS(i): alpha(i)*
(q(i)+x(i,s))+beta(i)/2*(q(i)+x(i,s))^2+delta(i)/2*x(i,s)^2)));
@OLE( 'TS1.xls', 'GENERATORS!L2:N3') = a, b, q;
@OLE( 'TS1.xls', 'GENERATORS!O2:O3') = @writefor(GEN_SCEN(i,s)|s #EQ# 1: x(i,s));
@OLE( 'TS1.xls', 'GENERATORS!P2:P3') = @writefor(GEN_SCEN(i,s)|s #EQ# 2: x(i,s));
@OLE( 'TS1.xls', 'GENERATORS!Q2:Q3') = profit;
@OLE( 'TS1.xls', 'GENERATORS!R2:R2') = f;
@OLE( 'TS1.xls', 'GENERATORS!S2:T2') = p;
@OLE( 'TS1.xls', 'GENERATORS!U2:U2') = welfare;
@OLE( 'TS1.xls', 'GENERATORS!V2:V2') = rep;
@OLE( 'TS1.xls', 'GENERATORS!W2:W2') = st1;
@OLE( 'TS1.xls', 'GENERATORS!X2:X2') = st2;
@OLE( 'TS1.xls', 'GENERATORS!Y2:Y2') = @write('WNN');
i=1;

walpha(2*(ind-1)+i)=alpha(i);
wbeta(2*(ind-1)+i)=beta(i);
wdelta(2*(ind-1)+i)=delta(i);
woptimizer(2*(ind-1)+i)=optimizer(i);
wa_fixed(2*(ind-1)+i)=a_f(2*(ind-1)+i);



wb_fixed(2*(ind-1)+i)=b_f(2*(ind-1)+i);
wd_fixed(2*(ind-1)+i)=d_f(2*(ind-1)+i);
wa(2*(ind-1)+i)=a(i);
wb(2*(ind-1)+i)=b(i);
wd(2*(ind-1)+i)=d(i);
wq(2*(ind-1)+i)=q(i);
wx1(2*(ind-1)+i)=x(i,1);
wx2(2*(ind-1)+i)=x(i,2);
wprofit(2*(ind-1)+i)=profit(i);
wf(2*(ind-1)+i)=f;
wp1(2*(ind-1)+i)=p(1);
wp2(2*(ind-1)+i)=p(2);
wwelfare(2*(ind-1)+i)=welfare;
wrep(2*(ind-1)+i)=rep;
wst1(2*(ind-1)+i)=st1;
wst2(2*(ind-1)+i)=st2;
wtet(2*(ind-1)+i)=theta(i);
wcoe(2*(ind-1)+i)=transCoef(i);
wY_f(2*(ind-1)+i)=Y(i);
wZ_f(2*(ind-1)+i)=Z;

i=2;
walpha(2*(ind-1)+i)=alpha(i);
wbeta(2*(ind-1)+i)=beta(i);
wdelta(2*(ind-1)+i)=delta(i);
woptimizer(2*(ind-1)+i)=optimizer(i);
wa_fixed(2*(ind-1)+i)=a_f(2*(ind-1)+i);
wb_fixed(2*(ind-1)+i)=b_f(2*(ind-1)+i);
wd_fixed(2*(ind-1)+i)=d_f(2*(ind-1)+i);
wa(2*(ind-1)+i)=a(i);
wb(2*(ind-1)+i)=b(i);
wd(2*(ind-1)+i)=d(i);
wq(2*(ind-1)+i)=q(i);
wx1(2*(ind-1)+i)=x(i,1);
wx2(2*(ind-1)+i)=x(i,2);
wprofit(2*(ind-1)+i)=profit(i);
wf(2*(ind-1)+i)=f;
wp1(2*(ind-1)+i)=p(1);
wp2(2*(ind-1)+i)=p(2);
wwelfare(2*(ind-1)+i)=welfare;
wrep(2*(ind-1)+i)=rep;
wst1(2*(ind-1)+i)=st1;
wst2(2*(ind-1)+i)=st2;
wtet(2*(ind-1)+i)=theta(i);
wcoe(2*(ind-1)+i)=transCoef(i);
wY_f(2*(ind-1)+i)=Y(i);
wZ_f(2*(ind-1)+i)=Z;

ind=ind+1;
@OLE( 'TS1.xls', 'OUT_WNN!B2:E101') = wtet,wcoe,wY_f,wZ_f;
@OLE( 'TS1.xls', 'OUT_WNN!G2:AA101') =  walpha ,wbeta ,wdelta ,woptimizer ,wa_fixed 
,wb_fixed,wd_fixed ,wa ,wb ,wd ,wq ,wx1 ,wx2 ,wprofit,wf,wp1,wp2,wwelfare,wrep,wst1,wst2;
);

ENDCALC
@WARN('LINGO Finished',1#GE#0);
END



!The stochastic settlement model with asymmetric generators and non-negativity 
constraints.;
MODEL:
DATA:
NumProblems= @OLE('SFSP.xls', 'GENERATORS!K16');
ENDDATA

!The similar parameters to the parameters defined in the original paper have a similar 
definition.
The rest of parameters are defined as comments.;
SETS:

GENERATORS :  b , alpha , beta , delta , q , a , d, a_fixed, d_fixed, Opt, optimizer, 
profit;
!
***a_fixed, b_fixed, d_fixed: The offered parametters of the generators in the last run. 
***opt: If the current decision of the optimizing generator is similar (with a precision) 
to its decision in the last run, it is 1, otherwise it is zero.
***optimizer: in each round it is one for the optimizing generator and zero for the 
others.
***
;
SCENARIOS : Y, theta, transCoef, p, C;
GEN_SCEN (GENERATORS, SCENARIOS): x, e, boundary ;
! 
***e: The dual variable of the non-negativity consttraint q_i+x_{i,s}>=0.
***boundary: A binary variable to linearize the orthogonality constraint e_{i,s}(q_{i}+x_
{i,s})=0. 
;
OPTIMIZERS  (GENERATORS); 
!
The set of the optimizer generator in each step of the dynamic process.
;
FIXEDGENS(GENERATORS) | #NOT# @IN( OPTIMIZERS, &1) ;
!All non-optimizer generators;
ROWS /1..100/:alp,bet,del,op,a_f,b_f,d_f ,tet,coe,Y_f,Z_f,walpha ,wbeta ,wdelta 
,woptimizer ,wa_fixed ,wb_fixed,wd_fixed ,wb ,wa ,wd ,wq ,wx1 ,wx2 
,wprofit,wf,wp1,wp2,wwelfare,wrep,wst1,wst2,wtet,wcoe,wY_f,wZ_f;
!Degined for the purpose of collecting result of different runs of the model, and 
outputting the results.;

ENDSETS

! Here is the data.
The data is read from an Excel file.
;
DATA:
GENERATORS, OPTIMIZERS= @OLE( 'SFSP.xls', 'GENERATORS','OPTIMIZERS');
SCENARIOS = @OLE('SFSP.xls','SCENARIOS');
theta, transCoef, Y = @OLE('SFSP.xls','SCENSDATA');
Z, MyBigM = @OLE('SFSP.xls' , 'Z' , 'MyBigM');
alp,bet,del,op,a_f,b_f,d_f = @OLE('SFSP.xls','GENERATORS!D16:J116');
tet,coe,Y_f,Z_f = @OLE('SFSP.xls','GENERATORS!N16:Q116');
precision =@OLE('SFSP.xls','GENERATORS!R18');
!A tolerance that determines the smallest value that we consider as a change in strategy. 
In other words, if the change in a firm's strategy is less than this, we count that as a 
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no change in the strategy.;

maxRep=@OLE('SFSP.xls','GENERATORS!R19');
!If we do not find an equilibrium after "maxRep" steps, we stop searching for it.;

ENDDATA

SUBMODEL SFSP:
!This is the optimization model solved by a firm to maximize profit, assuming that the 
strategy set of all other firms are fixed. ;
@FOR(GENERATORS: @FREE(a));
@FOR(SCENARIOS: @FREE(p));
@FOR(GEN_SCEN: @FREE(x));
@FREE(f);

[obj] MAX = @sum (GENERATORS(i): optimizer(i)* (  @sum (SCENARIOS(s): (theta(s)*p(s))) * q
(i)+ @sum (SCENARIOS(s): (theta(s)*(p(s)* transCoef(s)*x(i,1)-(alpha(i) * (q(i)+x(i,s))+ 
beta(i)/2 * (q(i)+transCoef(s)*x(i,1))^2 + delta(i)/2 *transCoef(s)^2*x(i,1)^2)))  ) ));
! The objective;

!The constraints include constraints of a generator on his offered supply function and KKT
consitions of the ISO's optimization problem;
@FOR (GENERATORS(i):
[Const_f] -f + @sum ( SCENARIOS(s): (-e(i,s)+b(i)*theta(s)*x(i,s))) + a(i) + b(i)*q(i) =
0;

x(i,2)=transCoef(2)*x(i,1);
);

@FOR(GEN_SCEN(i,s):
[Const_p] -e(i,s) +theta(s)*(-p(s)+a(i)+b(i)*q(i)+(b(i)+d(i))*transCoef(s)*x(i,1))  = 0;

q(i) + x(i,s) >= 0;
[Const_ebin] e(i,s)  <= boundary(i,s)*MyBigM;
[Const_qxbin] q(i)+x(i,s) <= (1-boundary(i,s))*MyBigM;

@BIN(boundary(i,s));
);

@FOR(SCENARIOS(S):
[Const_p_demand] theta(s) * (p(s)+ Z* C(s)-Y(s))  = 0;
[Const_C] theta(s)*(-cQ+C(s)-@sum (GENERATORS(i): x(i,s))) = 0;
);

!Non-optimizing generators should offer their previous offered parameters;
@FOR (GENERATORS(k)|optimizer(k) #EQ# 0 :

a(k)=a_fixed(k);
d(k)=d_fixed(k);

);

f - @sum (SCENARIOS(s): (theta(s)*p(s)))  = 0;
cQ - @sum (GENERATORS(h): q(h))  = 0;

ENDSUBMODEL

!Calculations and procedure of the dynamic process to find an equilibrium for each of the 
market settings.;
CALC:
@for(ROWS(k):

walpha(k)=0;
wbeta(k)=0;
wdelta(k)=0;
woptimizer(k)=0;
wa_fixed(k)=0;
wb_fixed(k)=0;
wd_fixed(k)=0;
wb(k)=0;
wa(k)=0;



wd(k)=0;
wq(k)=0;
wx1(k)=0;
wx2(k)=0;
wprofit(k)=0;
wf(k)=0;
wp1(k)=0;
wp2(k)=0;
wwelfare(k)=0;
wrep(k)=0;
wst1(k)=0;
wst2(k)=0;
wtet(k)=0;
wcoe(k)=0;
wY_f(k)=0;
wZ_f(k)=0;
);

!Reading different market settings (i.e. case studies or examples).; 
ind=@OLE('SFSP.xls','GENERATORS!L16');
@WHILE (ind #LE# NumProblems:
eq=0;
rep=0;
alp1=alp(2*(ind-1)+1);
alp2=alp(2*(ind-1)+2);
bet1=bet(2*(ind-1)+1);
bet2=bet(2*(ind-1)+2);
del1=del(2*(ind-1)+1);
del2=del(2*(ind-1)+2);
op1=op(2*(ind-1)+1);
op2=op(2*(ind-1)+2);
a_f1=a_f(2*(ind-1)+1);
a_f2=a_f(2*(ind-1)+2);
b_f1=b_f(2*(ind-1)+1);
b_f2=b_f(2*(ind-1)+2);
d_f1=d_f(2*(ind-1)+1);
d_f2=d_f(2*(ind-1)+2);
tet1=tet(2*(ind-1)+1);
tet2=tet(2*(ind-1)+2);
coe1=coe(2*(ind-1)+1);
coe2=coe(2*(ind-1)+2);
Y_f1=Y_f(2*(ind-1)+1);
Y_f2=Y_f(2*(ind-1)+2);
Z_f1=Z_f(2*(ind-1)+1);

@OLE('SFSP.xls','GENERATORS!D2:j2')=alp1,bet1,del1,op1,a_f1,b_f1,d_f1;
@OLE('SFSP.xls','GENERATORS!D3:j3')=alp2,bet2,del2,op2,a_f2,b_f2,d_f2;

@OLE('SFSP.xls','SCENARIOS!C2:E2')=tet1,coe1,Y_f1;
@OLE('SFSP.xls','SCENARIOS!C3:E3')=tet2,coe2,Y_f2;

@OLE('SFSP.xls','OtherParams!B2')=Z_f1;

@for( GENERATORS(i):
Opt(i)=0;

);

! st1 and st2 records the status of the optimization problems i.e. whether it is found a 
global optimal solution or a local optima. These are importnt to ensure that we actually 
find a true equilibrium.;
st1=1000;
st2=1000;

@WHILE (eq #LE# 1 #AND# rep#LE#maxRep:
st1=st2;
alpha, beta, delta, optimizer, a_fixed, b, d_fixed = @OLE( 'SFSP.xls', 'GENSDATA');



theta, transCoef, Y = @OLE('SFSP.xls','SCENSDATA');
Z = @OLE('SFSP.xls' , 'Z');
@SOLVE( SFSP);

@for(GENERATORS(i)| optimizer(i) #EQ# 1 :
@ifc( a(i) #GE# a_fixed(i)-precision  #AND#  a(i) #LE# a_fixed(i)+precision  

#AND# d(i) #GE# d_fixed(i)-precision  #AND#  d(i) #LE# d_fixed(i)+precision:
Opt(i)=1;

@else
Opt(i)=0;

 );

a_fixed(i) = a(i);
d_fixed(i) = d(i);

);
@for(GENERATORS(i):

@ifc( optimizer(i) #EQ# 1:
optimizer(i)=0;

@else
optimizer(i)=1;

 );

);
st2=@STATUS();
eq = @sum(GENERATORS(i): Opt(i));
@OLE( 'SFSP.xls', 'GENSDATA') = alpha, beta, delta, optimizer, a_fixed, b,d_fixed ;

rep=rep+1;
@for(GENERATORS(i): 

profit(i) =  f * q(i)+ @sum (SCENARIOS(s): (theta(s)*(p(s)* x(i,s)-(alpha(i) *
(q(i)+x(i,s))+ beta(i)/2 * (q(i)+x(i,s))^2 + delta(i)/2 *x(i,s)^2)))  ) ;

);
!Intermediate output;
welfare = @sum(SCENARIOS(s): theta(s)*(Y(s)*C(s)-Z/2*C(s)^2-@sum(GENERATORS(i): 

alpha(i)*(q(i)+x(i,s))+beta(i)/2*(q(i)+x(i,s))^2+delta(i)/2*x(i,s)^2)));
@OLE( 'SFSP.xls', 'GENERATORS!L2:N3') = a, d, q;
@OLE( 'SFSP.xls', 'GENERATORS!O2:O3') = @writefor(GEN_SCEN(i,s)|s #EQ# 1: x(i,s));
@OLE( 'SFSP.xls', 'GENERATORS!P2:P3') = @writefor(GEN_SCEN(i,s)|s #EQ# 2: x(i,s));
@OLE( 'SFSP.xls', 'GENERATORS!Q2:Q3') =profit;
@OLE( 'SFSP.xls', 'GENERATORS!R2:R2') = f;
@OLE( 'SFSP.xls', 'GENERATORS!S2:T2') = p;
@OLE( 'SFSP.xls', 'GENERATORS!U2:U2') = welfare;
@OLE( 'SFSP.xls', 'GENERATORS!V2:V2') = rep;
@OLE( 'SFSP.xls', 'GENERATORS!W2:W2') = st1;
@OLE( 'SFSP.xls', 'GENERATORS!X2:X2') = st2;
@OLE( 'SFSP.xls', 'GENERATORS!Y2:Y2') = @write('WNN');

);

!Final output;
welfare = @sum(SCENARIOS(s): theta(s)*(Y(s)*C(s)-Z/2*C(s)^2-@sum(GENERATORS(i): alpha(i)*
(q(i)+x(i,s))+beta(i)/2*(q(i)+x(i,s))^2+delta(i)/2*x(i,s)^2)));
@OLE( 'SFSP.xls', 'GENERATORS!L2:N3') = a, d, q;
@OLE( 'SFSP.xls', 'GENERATORS!O2:O3') = @writefor(GEN_SCEN(i,s)|s #EQ# 1: x(i,s));
@OLE( 'SFSP.xls', 'GENERATORS!P2:P3') = @writefor(GEN_SCEN(i,s)|s #EQ# 2: x(i,s));
@OLE( 'SFSP.xls', 'GENERATORS!Q2:Q3') =profit;
@OLE( 'SFSP.xls', 'GENERATORS!R2:R2') = f;
@OLE( 'SFSP.xls', 'GENERATORS!S2:T2') = p;
@OLE( 'SFSP.xls', 'GENERATORS!U2:U2') = welfare;
@OLE( 'SFSP.xls', 'GENERATORS!V2:V2') = rep;
@OLE( 'SFSP.xls', 'GENERATORS!W2:W2') = st1;
@OLE( 'SFSP.xls', 'GENERATORS!X2:X2') = st2;
@OLE( 'SFSP.xls', 'GENERATORS!Y2:Y2') = @write('WNN');
i=1;

walpha(2*(ind-1)+i)=alpha(i);
wbeta(2*(ind-1)+i)=beta(i);
wdelta(2*(ind-1)+i)=delta(i);
woptimizer(2*(ind-1)+i)=optimizer(i);



wa_fixed(2*(ind-1)+i)=a_f(2*(ind-1)+i);
wb_fixed(2*(ind-1)+i)=b_f(2*(ind-1)+i);
wd_fixed(2*(ind-1)+i)=d_f(2*(ind-1)+i);
wa(2*(ind-1)+i)=a(i);
wb(2*(ind-1)+i)=b(i);
wd(2*(ind-1)+i)=d(i);
wq(2*(ind-1)+i)=q(i);
wx1(2*(ind-1)+i)=x(i,1);
wx2(2*(ind-1)+i)=x(i,2);
wprofit(2*(ind-1)+i)=profit(i);
wf(2*(ind-1)+i)=f;
wp1(2*(ind-1)+i)=p(1);
wp2(2*(ind-1)+i)=p(2);
wwelfare(2*(ind-1)+i)=welfare;
wrep(2*(ind-1)+i)=rep;
wst1(2*(ind-1)+i)=st1;
wst2(2*(ind-1)+i)=st2;
wtet(2*(ind-1)+i)=theta(i);
wcoe(2*(ind-1)+i)=transCoef(i);
wY_f(2*(ind-1)+i)=Y(i);
wZ_f(2*(ind-1)+i)=Z;

i=2;
walpha(2*(ind-1)+i)=alpha(i);
wbeta(2*(ind-1)+i)=beta(i);
wdelta(2*(ind-1)+i)=delta(i);
woptimizer(2*(ind-1)+i)=optimizer(i);
wa_fixed(2*(ind-1)+i)=a_f(2*(ind-1)+i);
wb_fixed(2*(ind-1)+i)=b_f(2*(ind-1)+i);
wd_fixed(2*(ind-1)+i)=d_f(2*(ind-1)+i);
wa(2*(ind-1)+i)=a(i);
wb(2*(ind-1)+i)=b(i);
wd(2*(ind-1)+i)=d(i);
wq(2*(ind-1)+i)=q(i);
wx1(2*(ind-1)+i)=x(i,1);
wx2(2*(ind-1)+i)=x(i,2);
wprofit(2*(ind-1)+i)=profit(i);
wf(2*(ind-1)+i)=f;
wp1(2*(ind-1)+i)=p(1);
wp2(2*(ind-1)+i)=p(2);
wwelfare(2*(ind-1)+i)=welfare;
wrep(2*(ind-1)+i)=rep;
wst1(2*(ind-1)+i)=st1;
wst2(2*(ind-1)+i)=st2;
wtet(2*(ind-1)+i)=theta(i);
wcoe(2*(ind-1)+i)=transCoef(i);
wY_f(2*(ind-1)+i)=Y(i);
wZ_f(2*(ind-1)+i)=Z;

ind=ind+1;
@OLE( 'SFSP.xls', 'OUT_WNN!B2:E101') = wtet,wcoe,wY_f,wZ_f;
@OLE( 'SFSP.xls', 'OUT_WNN!G2:AA101') =  walpha ,wbeta ,wdelta ,woptimizer ,wa_fixed 
,wb_fixed,wd_fixed ,wa ,wb ,wd ,wq ,wx1 ,wx2 ,wprofit,wf,wp1,wp2,wwelfare,wrep,wst1,wst2;
);

ENDCALC
@WARN('LINGO Finished',1#GE#0);
END
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